scholarly journals Vγ9γδ T Cell Induction by Human Umbilical Cord Blood Monocytes-Derived, Interferon-α-Stimulated Dendritic Cells

2020 ◽  
Vol 27 (1) ◽  
pp. 107327482097402
Author(s):  
Bui Viet Anh ◽  
Chu Thi Thao ◽  
Pham Thi Cuong ◽  
Nguyen Thi Thu Thuy ◽  
Hoang Huong Diem ◽  
...  

Dendritic cells (DC) are professional antigen-presenting cells that activate T cells to kill cancer cells. The extracellular products of DCs have also been reported to perform the same function. In this study, we examined the in vitro differentiation of umbilical cord blood monocytes into DCs in the presence of GM-CSF, and interferon (IFN)-α. The resulting DC population (called IFN-DCs) were then matured in the presence of TNF-α, and pulsed with total protein extracted from A549 cancer cell line. The pulsed DCs and their conditioned medium were then used to stimulate allogeneic lymphocytes (alloLym). The proliferation and cytotoxicity of alloLym were then determined. The results showed that after 5 days of differentiation, the stimulated monocytes had the typical morphology and characteristic surface markers of DCs. Both unpulsed and pulsed IFN-DCs can induce the proliferation of alloLym, especially Vγ9γδ T cells. The conditioned medium from pulsed and unpulsed IFN-DCs culture also prompted the growth of Vγ9γδ T cells. Moreover, alloLym stimulated with pulsed DCs and their conditioned medium had a greater cytotoxic effect on A549 cells than the ones that were not stimulated. Our results indicated that IFN-DCs and their conditioned medium could induce the anti-tumor immunity in vitro, providing evidence for application of cord blood monocytes-derived, interferon-α- stimulated dendritic cells and their extracellular products in anti-cancer therapy.

2016 ◽  
Vol 99 ◽  
pp. 162-172 ◽  
Author(s):  
D. Rosales-Martinez ◽  
L. Gutierrez-Xicotencatl ◽  
O. Badillo-Godinez ◽  
D. Lopez-Guerrero ◽  
A. Santana-Calderon ◽  
...  

2015 ◽  
Vol 39 (9) ◽  
pp. 1080-1086 ◽  
Author(s):  
Yo Seph Park ◽  
Changsik Shin ◽  
Han Sung Hwang ◽  
Martin Zenke ◽  
Dong Wook Han ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4213-4213
Author(s):  
Alexander Kiani ◽  
Hanna Kuithan ◽  
Friederike Kuithan ◽  
Satu Kyttaelae ◽  
Ivonne Habermann ◽  
...  

Abstract NFAT (Nuclear Factor of Activated T cells) transcription factors are a family of five proteins that are primarily known for their central role in the regulation of inducible gene expression in activated T cells. It is now clear that NFAT proteins are also expressed in various non-immune cell types, where they regulate the expression of genes involved in such diverse cellular processes as proliferation, apoptosis and differentiation. We have previously shown that NFATc2 is strongly expressed in human CD34+ cells and megakaryocytes, but not in purified peripheral blood neutrophil granulocytes and monocytes. Furthermore, granulocytic differentiation of CD34+ cells in vitro was paralleled by the rapid and profound suppression of NFATc2 mRNA and protein. The function of NFATc2 in CD34+ cells, however, is unknown, and no information exists on the expression or regulation of other NFAT family members in CD34+ cells or during heamtopoietic differentiation. To provide a systematic basis for further functional analysis, we established in the present study a comprehensive expression profile of all five NFAT family members in CD34+ cells and during their in vitro differentiation into neutrophil, eosinophil, erythroid and megakaryocytic lineages. CD34+ cells were purified from umbilical cord blood and cultured in the presence of cytokines or cytokine combinations inducing differentiation of the respective lineages. At several time-points during the culture, the efficacy and specificity of the differentiation was monitored by morphological examination of cytospin preparations as well as by analysis of lineage-specific cell surface markers. By quantitative RT-PCR, NFATc3 and NFAT5 were the NFAT family member found to be most prominently expressed in CD34+ cells of both peripheral blood and umbilical cord blood, as well as in the immature CD34+CD38− subpopulation of cells. NFAT expression during the differentiation of umbilical cord blood CD34+ cells into the diverse hematopoietic lineages followed a family member- and lineage-specific pattern. Neutrophil differentiation was accompanied by a rapid suppression of transcript level for all NFAT family members. In contrast, eosinophil, erythrocyte and megakaryocyte differentiation was paralleled by an upregulation of NFATc3, NFATc1/NFATc3 and NFATc1 mRNA, respectively. The most obvious lineage-specific pattern was observed for NFATc4, where transcript levels were low in CD34+ cells and either not or only transiently increased in neutrophil, eosinophil and erythrocyte differentiation; in contrast, they were specifically upregulated about 10-fold in the megakaryocytic lineage. The expression profile of NFAT family members in developing hematopoietic cells of diverse lineages presented here will allow predicting and directly assessing the role of individual NFAT family members in hematopoietic differentiation.


2000 ◽  
Vol 74 (4) ◽  
pp. 1864-1870 ◽  
Author(s):  
Weily Soong ◽  
Julie C. Schultz ◽  
Andriani C. Patera ◽  
Marvin H. Sommer ◽  
Jeffrey I. Cohen

ABSTRACT Varicella-zoster virus (VZV) disseminates in the body in peripheral blood mononuclear cells during chickenpox. Up to 1 in 10,000 mononuclear cells are infected during the viremic phase of the disease. We developed an in vitro system to infect human mononuclear cells with VZV by using umbilical cord blood. In this system, 3 to 4% of T cells were infected with VZV. VZV mutants unable to express certain genes, such as open reading frame 47 (ORF47) or ORF66, were impaired for growth in T cells, while other mutants showed little difference from parental virus. VZV unable to express ORF47 was even more impaired for spread from umbilical cord blood cells to melanoma cells in vitro. Early-passage clinical isolates of VZV infected T cells at a similar rate to the Oka vaccine strain; however, the clinical isolates were more efficient in spreading from infected T cells to melanoma cells. This in vitro system for infecting human T cells with VZV should be useful for identifying cellular and viral proteins that are important for virus replication in T cells and for the spread of virus from T cells to other cells.


2010 ◽  
Vol 16 (2) ◽  
pp. S159-S160
Author(s):  
L.M. Haveman ◽  
M. Bulatovic ◽  
J.M. Meerding ◽  
B. Prakken ◽  
M. Bierings

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4835-4835
Author(s):  
Rodrigo Haddad ◽  
Josiane Lilian dos Santos Schiavinato ◽  
Felipe Saldanha Saldanha-Araújo ◽  
Priscila S Scheucher ◽  
Amélia G Araújo ◽  
...  

Abstract Abstract 4835 The development and functionality of CD4+CD25hi regulatory T cells (Tregs) depends on stable FoxP3 expression, a central regulator of Treg differentiation. It is believed that this is accomplished by regulatory regions in the promoter and 3 evolutionarily conserved noncoding sequences, termed CNS1, CNS2 (or TSDR) and CNS3. The activation of TCR (with anti-CD2/3/28) in CD4+CD25− naïve T cells from PBMCs, in the presence of IL-2, TGF-β and atRA, induces the generation of Foxp3+ induced regulatory T cells (iTreg). While demethylation of 5mC residues in the CNS2 is associated with stable FoxP3 expression in nTregs, the epigenetic events involved in the regulation of FoxP3 in iTregs remains unexplored. Recently, the oxidation of 5-mC, originating hidroxymethylated 5-hmC residues, have been described as a key mechanism of active demethylation, with roles in biological processes, such as regulation of pluripotency and differentiation of hematopoietic stem cells. In contrast to PBMCs, in umbilical cord blood (UCB) T cells are mainly naïve making UCB an attractive source for the development of protocols for generation of iTregs. Here, we evaluated the iTregs generation from UCB naïve T cells. In addition, we compared the expression of FoxP3 on iTregs and on naturally occurring Tregs (nTregs) obtained from PBMCs. Also, we evaluated the methylation pattern of promoter and CNS2 and CNS3 in nTregs, fleshly isolated naïve T cells, activated naïve T cells (Teff), and iTregs. Finally, we evaluated the ability of iTregs, to suppress the proliferation of activated T cells, as compared to nTregs. For this, CD4+CD25-CD45RA+ naïve T cells were immunomagnetically isolated from UCB and activated with anti-human CD2/CD3/CD28 beads (1:2 beads:cell ratio) in the presence of IL-2 (50 U/ml) with (iTregs) or without (Teff) TGF-β (5 ng/ml) and atRA (100 nM) for 5 days. In parallel, PBMCs from 5 individuals were obtained for nTregs phenotypic characterization. CD4+ gated cells from iTregs and from PBMC were analyzed by flow cytometry for FoxP3 expression in the CD25+, CD25hi and CD25−population. nTregs (CD4+CD25+CD127−) were immunomagnetically isolated from PBMCs and CD4+CD25hi and CD4+CD25− populations were FACS-sorted from iTreg to observe the potential in regulate the proliferation of CD3+ T cells (CFSE staining). Finally, methylation pattern analysis of FoxP3 locus, including CNS2 and CNS3, were performed in naïve T cells, nTregs, iTreg and Teff. The mean percentage of FoxP3+ cells in CD4+CD25hi from iTreg was 98.5%, as compared to 82.4% in PBMCs. Interestingly, the percentage of FoxP3+ cells in total CD4+CD25+ was higher in cells from iTreg (97,3%) than on PBMCs (26,8%). Moreover, while the percentage of FoxP3+ cells in the CD4+CD25− population, was very low in PBMCs (2,8%), up to 55% of the cells derived from iTreg were FoxP3+. The immunossupression assay showed that, compared to activated CD3+ T cells cultured alone, nTregs (CD4+CD25+CD127−) decreased the proliferation of CD3+ T cells in 55%, while iTregs (CD4+CD25hi) decreased the proliferation in 46%. Interestingly, the CD4+CD25− population from iTreg (55% of FoxP3+ cells) also decreased the proliferation of CD3+ T cells, but to a lower extent (21%). Additionally, while naïve T cells and Teff presented low level of 5hmC in both segments evaluated of CNS2 (∼1%); upon in vitro induction, iTregs presented 5hmC levels comparable to that of nTregs (5–11% and 5% respectively), in line to FoxP3 expression. Furthermore, CNS3, which was found to be partially demethylated in naïve T cells and nTregs (45 and 50% respectively), presented even higher levels of demethylation upon activation in iTregs and nTregs (77 and 82% respectively). In summary, we show that functional Foxp3+CD4+CD25hi T cells can be generated in vitro from UCB naïve T cells. Additionally, our results indicate that active demethylation of CNS2 occurs in a TGF-β and atRA-dependent manner during iTregs generation. Moreover, the partial demethylation of CNS3 observed in naïve T cells and nTregs, and the increased demethylation promoted by activation (in Teff and iTreg), is consistent with the role of CNS3 as a pioneer element that initiates FoxP3 transcription. Our results contribute to the understanding of the epigenetic mechanisms underlying the differentiation of Tregs and may help in the development of protocols for the generation of functional iTregs for future therapeutic applications. Support: FAPESP, CNPq. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document