Robust Kalman-Filter-Based Frequency-Shaping Optimal Active Vibration Control of Uncertain Flexible Mechanical Systems with Nonlinear Actuators

2003 ◽  
Vol 9 (6) ◽  
pp. 623-644 ◽  
Author(s):  
Shinn-Horng Chen

In this paper, we present a time-domain control methodology, called the robust Kalman-filter-based frequency-shaping optimal feedback (KFBFSOF) control method. Using this method, we treat the active vibration control (or active vibration suppression) problem of flexible mechanical systems under simultaneously high-frequency unmodeled dynamics, residual modes, linear time-varying parameter perturbations in both the controlled and residual parts, noises (input noise and measurement noise), noise uncertainties and actuator nonlinearities. Two robust stability conditions are proposed for the flexible mechanical system, which is controlled by a KFBFSOF controller and subject to mode truncation, noise uncertainties, actuator nonlinearities and linear structured time-varying parameter perturbations simultaneously. The advantage of the presented KFBFSOF control methodology is that it can make the controlled closed-loop system have both good robustness at high frequencies and good performance at low frequencies. Besides, the proposed robust stability criteria guarantee that the designed KFBFSOF controller can make the controlled flexible mechanical system avoid the possibilities of instability induced by both spillover and time-varying parameter perturbations. Two examples are given to illustrate the application of the presented control methodology to the active vibration control problems of a simply-supported flexible beam and of a flexible rotor system.

2000 ◽  
Vol 16 (3) ◽  
pp. 145-155 ◽  
Author(s):  
Shinn-Horng Chen ◽  
Jyh-Horng Chou ◽  
Liang-An Zheng

ABSTRACTThis paper presents a time-domain control methodology, which is named as the robust Kalman-filter-based frequency-shaping optimal feedback (KFBFSOF) control method, to treat the active vibration control (or active vibration suppression) problem of flexible mechanical systems under simultaneously high frequencies unmodelled dynamics, residual modes, linear time-varying parameter perturbations in both the controlled and residual parts, noises (input noise and measurement noise),and noise uncertainties. Two robust stability conditions are proposed for the flexible mechanical system, which is controlled by a KFBFSOF controller and subject to mode truncation, noise uncertainties, and linear structured time-varying parameter perturbations simultaneously. The advantage of the presented KFBFSOF control methodology is that it can make the controlled closed-loop system to obtain both good robustness at high frequencies and good performance at low frequencies. Besides, the proposed robust stability criteria guarantee that the designed KFBFSOF controller can make the controlled flexible mechanical system to avoid the possibilities of both spillover-induced instability and time-varying-parameter-perturbation-induced instability. Two examples are given to illustrate the application of the presented control methodology to the active vibration control problems of a simply supported flexible beam and of a flexible rotor system.


2019 ◽  
Vol 26 (3-4) ◽  
pp. 200-213 ◽  
Author(s):  
Hongbo Zheng ◽  
Hui Qin ◽  
Mingke Ren ◽  
Zhiyi Zhang

This paper proposes a new adaptive algorithm for the active vibration control of time-varying systems in the presence of broadband or narrowband disturbances. The new algorithm combines the conventional filtered-x least mean square algorithm with the recursive prediction error (RPE) algorithm after the gradient modification of the RPE algorithm. The modified RPE algorithm is used to estimate the model of the control path online. The well-known filtered-x least mean square (FxLMS) algorithm is effective for the uncertain or time-varying systems, and adopts an auxiliary white noise approach to estimate the model of the control path online. However, the auxiliary excitation will degrade the control performance to some extent. In the new algorithm, the auxiliary excitation is eliminated at the expense of a larger computational burden. The influence of the estimated finite impulse response series on the convergence is also discussed. A propulsion shafting model with the time-varying dynamics is established by frequency response function synthesis. Numerical simulation for the established model is presented to demonstrate the superior performance of the proposed algorithm as compared with the FxLMS algorithm.


Author(s):  
Heisei Yonezawa ◽  
Itsuro Kajiwara ◽  
Chiaki Nishidome ◽  
Takashi Hatano ◽  
Masato Sakata ◽  
...  

Active vibration control of automotive drivetrains must be developed to compensate for the backlash of gears because it causes undesired responses. In addition, an engine used as an actuator has a constraint which makes the control periods longer and time-varying, resulting in deterioration of the control performance. The contribution of this study is to cope with all the issues described above, backlash and the control period constraint, simultaneously. First, a basic experimental device, which simplifies an actual vehicle to focus on the effect due to backlash, is demonstrated. In the device, the control period constraint, which is equivalent to that of an engine, is reproduced by a digital signal processor. To reduce an adverse effect due to the extension of the control period, the sampled-data controller, which does not require discretization in its implementation, is employed. In this paper, predictive processing using the servo-type sampled-data controller is proposed to compensate for the phase delay of the control input caused by the time-varying control period. In addition, a control mode switching technique included in the prediction suppresses undesired responses due to backlash. Finally, control experiments verify the effectiveness of the control system.


Sign in / Sign up

Export Citation Format

Share Document