Smart damping of fuzzy fiber reinforced composite plates using 1--3 piezoelectric composites

2014 ◽  
Vol 22 (6) ◽  
pp. 1526-1546 ◽  
Author(s):  
Shailesh I Kundalwal ◽  
Manas Chandra Ray
2019 ◽  
Vol 30 (7) ◽  
pp. 977-997 ◽  
Author(s):  
Priyankar Datta ◽  
Manas Chandra Ray

In this article, we present a finite element model for the three-dimensional analysis of smart constrained layer damping of geometrically nonlinear vibrations of laminated fuzzy-fiber reinforced composite plates. The three-dimensional fractional derivative constitutive relation is implemented for the viscoelastic layer. The constraining layer of the smart constrained layer damping treatment is composed of the vertically/obliquely reinforced 1–3 piezoelectric composites. The von Kármán–type nonlinear strain–displacement relations are used to incorporate the geometric nonlinearity in the model. The main aim of this article is to numerically investigate the effect of carbon nanotube waviness on the nonlinear smart damping. Several thin laminated substrate fuzzy-fiber reinforced composite plates with straight carbon nanotubes and wavy carbon nanotubes with different waviness in different planes are considered with various boundary conditions and stacking sequences to numerically compute their effect on smart damping. The performance of the obliquely reinforced 1–3 piezoelectric composites is discussed and the efficacy of the present smart finite element model in terms of active control authority is also presented.


1993 ◽  
Vol 8 (12) ◽  
pp. 3106-3110 ◽  
Author(s):  
W. Lauriks ◽  
C. Desmet ◽  
C. Glorieux ◽  
J. Thoen

Optically generated thermal waves have been used to measure the thermal diffusivity of a unidirectional carbon fiber reinforced composite plate (CFRC) both parallel and perpendicular to the fiber direction. The optically generated thermal waves have been used in combination with a noncontact optical detection technique. The diffusivity perpendicular to the fiber direction can also be determined by attaching a pyroelectric detector to the back of the sample. The value obtained this way agrees well with the results from the optical detection technique. An anisotropy factor of about 18 has been measured for a unidirectional CFRC, which agrees well with literature values obtained with completely different techniques.


2012 ◽  
Vol 488-489 ◽  
pp. 676-680
Author(s):  
Pramod Kumar ◽  
S.K. Tiwari

Finite element analysis has been used to find out eigen values and mode shape for fiber reinforced composite plates. FRC plates are important structural elements in modern engineering structures. Vibrations of laminated composite plates have been the subject of significant research activities in recent years. Last two decades have witnessed continued development of advanced composite and other high performance aerospace materials with increased specific strength and modulus, longer fatigue life, higher combat survivability etc. Advanced composite laminates extend the possibility of optimal design through the variation of stacking sequence and fiber orientation, known as composite tailoring. The benefits that accrue from this are not attainable without solving the complexities that are introduced by various coupling effects, such as bending–stretching and bending-twisting. Even, as the matrix material is of relatively low shearing stiffness as compared to the fibers, a reliable prediction of frequency response of laminated plates must account for transverse shear deformation. A four noded quadrilateral finite element is considered for the study of frequency response of composite plate. An analytical solution to the boundary value problem of free vibration response of arbitrarily laminated plates subjected to an admissible boundary condition is presented. A rectangular fiber reinforced composite plate is modeled in FEM software (NISA 15) and natural frequencies, mode shapes are obtained and are compared with the available analytical solutions.


Ultrasonics ◽  
2003 ◽  
Vol 41 (2) ◽  
pp. 97-103 ◽  
Author(s):  
Emmanuel Guilliorit ◽  
Bernard Hosten ◽  
Christophe Bacon ◽  
D.E. Chimenti

Sign in / Sign up

Export Citation Format

Share Document