Steady periodic response for a vibration system with distributed order derivatives to periodic excitation

2017 ◽  
Vol 24 (14) ◽  
pp. 3124-3131 ◽  
Author(s):  
Jun-Sheng Duan ◽  
Dumitru Baleanu

Steady-state periodic responses for a vibration system with distributed order derivatives are investigated, where the fractional derivative operator [Formula: see text] is utilized. The response to complex harmonic excitation is derived and the amplitude–frequency and phase–frequency relations are obtained. For a periodic excitation, we decompose it into the Fourier series, and then make use of the principle of superposition and the results of harmonic excitations to obtain the response. Finally, we examine three numerical examples by using the proposed method.

2016 ◽  
Vol 32 (1) ◽  
pp. 25-33 ◽  
Author(s):  
C. Huang ◽  
J.-S. Duan

AbstractThe steady-state response to periodic excitation in the linear fractional vibration system was considered by using the fractional derivative operator . First we investigated the response to the harmonic excitation in the form of complex exponential function. The amplitude-frequency relation and phase-frequency relation were derived. The effect of the fractional derivative term on the stiffness and damping was discussed. For the case of periodic excitation, we decompose the periodic excitation into a superposition of harmonic excitations by using the Fourier series, and then utilize the results for harmonic excitations and the principle of superposition, where our adopted tactics avoid appearing a fractional power of negative numbers to overcome the difficulty in fractional case. Finally we demonstrate the proposed method by three numerical examples.


Open Physics ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 850-856 ◽  
Author(s):  
Jun-Sheng Duan ◽  
Yun-Yun Xu

Abstract The steady state response of a fractional order vibration system subject to harmonic excitation was studied by using the fractional derivative operator ${}_{-\infty} D_t^\beta,$where the order β is a real number satisfying 0 ≤ β ≤ 2. We derived that the fractional derivative contributes to the viscoelasticity if 0 < β < 1, while it contributes to the viscous inertia if 1 < β < 2. Thus the fractional derivative can represent the “spring-pot” element and also the “inerterpot” element proposed in the present article. The viscosity contribution coefficient, elasticity contribution coefficient, inertia contribution coefficient, amplitude-frequency relation, phase-frequency relation, and influence of the order are discussed in detail. The results show that fractional derivatives are applicable for characterizing the viscoelasticity and viscous inertia of materials.


Open Physics ◽  
2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Jun-Sheng Duan ◽  
Can Huang ◽  
Li-Li Liu

AbstractIn this work, we consider a fractional nonlinear vibration system of Duffing type with harmonic excitation by using the fractional derivative operator


2020 ◽  
Vol 37 ◽  
pp. 108-117
Author(s):  
Yu Li ◽  
Jun-Sheng Duan

Abstract The fractional oscillation system with two Weyl-type fractional derivative terms $_{ - \infty }D_t^\beta x$ (0 &lt; β &lt; 1) and $_{ - \infty }D_t^\alpha x$ (1 &lt; α &lt; 2), which portray a “spring-pot” and an “inerter-pot” and contribute to viscoelasticity and viscous inertia, respectively, was considered. At first, it was proved that the fractional system with constant coefficients under harmonic excitation is equivalent to a second-order differential system with frequency-dependent coefficients by applying the Fourier transform. The effect of the fractional orders β (0 &lt; β &lt; 1) and α (1 &lt; α &lt; 2) on inertia, stiffness and damping was investigated. Then, the harmonic response of the fractional oscillation system and the corresponding amplitude–frequency and phase–frequency characteristics were deduced. Finally, the steady-state response to a general periodic incentive was obtained by utilizing the Fourier series and the principle of superposition, and the numerical examples were exhibited to verify the method. The results show that the Weyl fractional operator is extremely applicable for researching the steady-state problem, and the fractional derivative is capable of describing viscoelasticity and portraying a “spring-pot”, and also describing viscous inertia and serving as an “inerter-pot”.


2007 ◽  
Vol 18 (03) ◽  
pp. 281-299 ◽  
Author(s):  
VASILY E. TARASOV

Definitions of fractional derivatives as fractional powers of derivative operators are suggested. The Taylor series and Fourier series are used to define fractional power of selfadjoint derivative operator. The Fourier integrals and Weyl quantization procedure are applied to derive the definition of fractional derivative operator. Fractional generalization of concept of stability is considered.


2021 ◽  
pp. 332-332
Author(s):  
Abass Kader ◽  
Mohamed Latif ◽  
Dumitru Baleanu

In this paper, the fractional heat equation in a sphere with hybrid fractional derivative operator is investigated. The heat conduction is considered in the case of central symmetry with heat absorption. The closed form solution in the form of three parameter Mittag-Leffler function is obtained for two Dirichlet boundary value problems. The joint finite sine Fourier-Laplace transform is used for solving these two problems. The dynamics of the heat transfer in the sphere is illustrated through some numerical examples and figures.


2011 ◽  
Vol 60 (2) ◽  
pp. 137-148
Author(s):  
Igor Korotyeyev ◽  
Beata Zięba

Steady-state modelling method for matrix-reactance frequency converter with boost topologyThis paper presents a method intended for calculation of steady-state processes in AC/AC three-phase converters that are described by nonstationary periodical differential equations. The method is based on the extension of nonstationary differential equations and the use of Galerkin's method. The results of calculations are presented in the form of a double Fourier series. As an example, a three-phase matrix-reactance frequency converter (MRFC) with boost topology is considered and the results of computation are compared with a numerical method.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 982
Author(s):  
Yujuan Huang ◽  
Jing Li ◽  
Hengyu Liu ◽  
Wenguang Yu

This paper considers the estimation of ruin probability in an insurance risk model with stochastic premium income. We first show that the ruin probability can be approximated by the complex Fourier series (CFS) expansion method. Then, we construct a nonparametric estimator of the ruin probability and analyze its convergence. Numerical examples are also provided to show the efficiency of our method when the sample size is finite.


2014 ◽  
Vol 14 (04) ◽  
pp. 1450009 ◽  
Author(s):  
Andrew Yee Tak Leung ◽  
Hong Xiang Yang ◽  
Ping Zhu

This paper is concerned with the steady state bifurcations of a harmonically excited two-member plane truss system. A two-degree-of-freedom Duffing system having nonlinear fractional derivatives is derived to govern the dynamic behaviors of the truss system. Viscoelastic properties are described by the fractional Kelvin–Voigt model based on the Caputo definition. The combined method of harmonic balance and polynomial homotopy continuation is adopted to obtain steady state solutions analytically. A parametric study is conducted with the help of amplitude-response curves. Despite its seeming simplicity, the mechanical system exhibits a wide variety of structural responses. The primary and sub-harmonic resonances and chaos are found in specific regions of system parameters. The dynamic snap-through phenomena are observed when the forcing amplitude exceeds some critical values. Moreover, it has been shown that, suppression of undesirable responses can be achieved via changing of viscosity of the system.


Sign in / Sign up

Export Citation Format

Share Document