Underactuated rotary inverted pendulum control using robust generalized dynamic inversion

2020 ◽  
Vol 26 (23-24) ◽  
pp. 2210-2220 ◽  
Author(s):  
Ibrahim M Mehedi ◽  
Uzair Ansari ◽  
Abdulrahman H Bajodah ◽  
Ubaid M AL-Saggaf ◽  
Belkacem Kada ◽  
...  

The article applies the robust generalized dynamic inversion control methodology to the problem of stabilizing upright equilibrium configuration of the under-actuated rotary inverted pendulum system while tracking rotary motion of the actuated arm. The proposed robust generalized dynamic inversion control law comprised equivalent and switching control parts. The equivalent control part works to enforce a virtual constraint dynamics of the controlled state variables by means of Moore–Penrose generalized inversion. The switching control part is of the sliding mode type, and it improves robustness against unmodeled system dynamics, parametric uncertainties, and external disturbances. The robust generalized dynamic inversion control design on the linearized model of the under-actuated rotary inverted pendulum is shown to guarantee semi-global asymptotically stable tracking performance. Numerous computer simulations and experiments are conducted on the Quanser rotary inverted pendulum system, revealing that the proposed algorithm has better convergence and tracking performance than conventional sliding mode and generalized dynamic inversion control strategies when both are applied separately.

2021 ◽  
Author(s):  
Omid Mofid ◽  
Khalid A Alattas ◽  
Saleh Mobayen

Abstract In this paper, an adaptive proportional-integral-derivative (PID) sliding mode control method combined with super-twisting algorithm is designed for the stabilization control of rotary inverted pendulum system in the appearance of exterior perturbation. The state-space model of rotary inverted pendulum in the presence of exterior disturbance is obtained. Then, the super-twisting PID sliding mode controller is designed for finite time stability control of this underactuated control system. The upper bounds of perturbation are presumed to be unknown; accordingly, the adaptive control procedure is taken to approximate the uncertain bound of the external disturbances. The stability control of rotary inverted pendulum system is proved by means of the Lyapunov stability theory. In order to validate accuracy and efficiency of the recommended control technique, some simulation outcomes are prepared and compared with other existing method. Moreover, experimental results are implemented to show the success of the proposed method.


2020 ◽  
Vol 26 (23-24) ◽  
pp. 2174-2184
Author(s):  
Ibrahim M Mehedi ◽  
Uzair Ansari ◽  
Ubaid M AL-Saggaf

The aim of this article was to determine control strategy for balance control of rotary double inverted pendulum system, which is highly nonlinear and unstable under-actuated system. The complexities involved in rotary double inverted pendulum dynamics make this system a useful engineering test bed to test and verify newly designed controllers. In this article, a constraint-based control approach titled robust generalized dynamic inversion is designed and implemented for robust stabilization of rotary double inverted pendulum system. The robust generalized dynamic inversion control is designed in two stages; in the first stage, constraint differential equations of the controlled state variables are prescribed, which encompasses the control objectives. To enforce the constraint dynamics, the equivalent control is realized by means of Moore–Penrose generalized inversion. To enhance robustness, the switching (discontinuous) control is introduced in second stage, whose design principle is based on classical sliding mode control theory. Finally, the controllers obtained in two stages are augmented to form the resultant robust generalized dynamic inversion control law. The proposed controller ensures robustness along with improved time domain performance regardless of system nonlinearities, uncertainties, and unwanted disturbances. The stability analysis is presented for guaranteeing semi-global asymptotically stable closed loop performance via Lyapunov stability criteria. Numerical simulation and experimental investigations are carried out along with comparative analysis, to demonstrate the effectiveness of robust generalized dynamic inversion control algorithm over other conventional control methods.


2015 ◽  
Vol 73 (6) ◽  
Author(s):  
Fairus, M. A. ◽  
Mohamed, Z. ◽  
Ahmad, M. N. ◽  
Loi, W. S.

This paper presents a multiobjective integral sliding mode controller (ISMC) for a rotary inverted pendulum system under the influence of varying load. Firstly, the nonlinear system is approximated to facilitate the desired control design via extended linearization and deterministic approach. By using both of these techniques, the nonlinear system is formulated into a nonlinear state-space representation where the uncertainties are retained in the model. Next, the design objectives are formulated into linear matrix inequalities (LMI) which are then solved efficiently through convex optimization algorithms. With proper selection variables, numbers of the decision variables for LMIs are reduced. Hence, it will reduce the numerical burden and believes the calculated values more viable in practice. Finally, simulation works are conducted and comparison is made between the proposed controller, such as normal ISMC and LQR. The simulation results illustrate the effectiveness of the proposed controller and the performance is evaluated through integral of absolute-value error (IAE) performance index. 


2017 ◽  
Vol 9 (1) ◽  
pp. 168781401668427 ◽  
Author(s):  
Te-Jen Su ◽  
Shih-Ming Wang ◽  
Tsung-Ying Li ◽  
Sung-Tsun Shih ◽  
Van-Manh Hoang

The objective of this article is to optimize parameters of a hybrid sliding mode controller based on fireworks algorithm for a nonlinear inverted pendulum system. The proposed controller is a combination of two modified types of the classical sliding mode controller, namely, baseline sliding mode controller and fast output sampling discrete sliding mode controller. The simulation process is carried out with MATLAB/Simulink. The results are compared with a published hybrid method using proportional–integral–derivative and linear quadratic regulator controllers. The simulation results show a better performance of the proposed controller.


Sign in / Sign up

Export Citation Format

Share Document