scholarly journals Constrained attractor selection using deep reinforcement learning

2020 ◽  
pp. 107754632093014
Author(s):  
Xue-She Wang ◽  
James D Turner ◽  
Brian P Mann

This study describes an approach for attractor selection (or multistability control) in nonlinear dynamical systems with constrained actuation. Attractor selection is obtained using two different deep reinforcement learning methods: (1) the cross-entropy method and (2) the deep deterministic policy gradient method. The framework and algorithms for applying these control methods are presented. Experiments were performed on a Duffing oscillator, as it is a classic nonlinear dynamical system with multiple attractors. Both methods achieve attractor selection under various control constraints. Although these methods have nearly identical success rates, the deep deterministic policy gradient method has the advantages of a high learning rate, low performance variance, and a smooth control approach. This study demonstrates the ability of two reinforcement learning approaches to achieve constrained attractor selection.

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sean Hooten ◽  
Raymond G. Beausoleil ◽  
Thomas Van Vaerenbergh

Abstract We present a proof-of-concept technique for the inverse design of electromagnetic devices motivated by the policy gradient method in reinforcement learning, named PHORCED (PHotonic Optimization using REINFORCE Criteria for Enhanced Design). This technique uses a probabilistic generative neural network interfaced with an electromagnetic solver to assist in the design of photonic devices, such as grating couplers. We show that PHORCED obtains better performing grating coupler designs than local gradient-based inverse design via the adjoint method, while potentially providing faster convergence over competing state-of-the-art generative methods. As a further example of the benefits of this method, we implement transfer learning with PHORCED, demonstrating that a neural network trained to optimize 8° grating couplers can then be re-trained on grating couplers with alternate scattering angles while requiring >10× fewer simulations than control cases.


Author(s):  
I. K. Nasyrov ◽  
V. V. Andreev

Pseudorandom signals of nonlinear dynamical systems are studied and the possibility of their application in information systems analyzed. Continuous and discrete dynamical systems are considered: Lorenz System, Bernoulli and Henon maps. Since the parameters of dynamical systems (DS) are included in the equations linearly, the principal possibility of the state linear control of a nonlinear DS is shown. The correlation properties comparative analysis of these DSs signals is carried out.. Analysis of correlation characteristics has shown that the use of chaotic signals in communication and radar systems can significantly increase their resolution over the range and taking into account the specific properties of chaotic signals, it allows them to be hidden. The representation of nonlinear dynamical systems equations in the form of stochastic differential equations allowed us to obtain an expression for the likelihood functional, with the help of which many problems of optimal signal reception are solved. It is shown that the main step in processing the received message, which provides the maximum likelihood functionals, is to calculate the correlation integrals between the components and the systems under consideration. This made it possible to base the detection algorithm on the correlation reception between signal components. A correlation detection receiver was synthesized and the operating characteristics of the receiver were found.


2001 ◽  
Author(s):  
Dexin Li ◽  
Jianxue Xu

Abstract In this paper, a generalized shooting/arc-length method for determining periodic orbit and its period of nonlinear dynamical system is presented. At first, by changing the time scale the period value of periodic orbit of the nonlinear system is drawn into the governing equation of this system. Then, by using the period value as a parameter, the shooting/arc-length procedure is taken for seeking such a periodic solution and its period simultaneously. The value of increment changed in iteration procedure is selected by using optimization method. The procedure involves the detennining of periodic orbit and its period value of the system. Thereby, the periodic orbit and period value of the system can be sought out rapidly and precisely. At last, the validity of such method is verified by determining the periodic orbit and period value for van der pol equation and nonlinear rotor-bear system.


2014 ◽  
Vol 534 ◽  
pp. 131-136
Author(s):  
Long Cao ◽  
Yi Hua Cao

A novel method based on numerical continuation algorithm for equilibria and stability analysis of nonlinear dynamical system is introduced and applied to an aircraft vehicle model. Dynamical systems are usually modeled with differential equations, while their equilibria and stability analysis are pure algebraic problems. The newly-proposed method in this paper provides a way to solve the equilibrium equation and the eigenvalues of the locally linearized system simultaneously, which avoids QR iterations and can save much time.


2021 ◽  
Author(s):  
Marine Schimel ◽  
Ta-Chu Kao ◽  
Kristopher T. Jensen ◽  
Guillaume Hennequin

Understanding how neural dynamics give rise to behaviour is one of the most fundamental questions in systems neuroscience. To achieve this, a common approach is to record neural populations in behaving animals, and model these data as emanating from a latent dynamical system whose state trajectories can then be related back to behavioural observations via some form of decoding. As recordings are typically performed in localized circuits that form only a part of the wider implicated network, it is important to simultaneously learn the local dynamics and infer any unobserved external input that might drive them. Here, we introduce iLQR-VAE, a novel control-based approach to variational inference in nonlinear dynamical systems, capable of learning both latent dynamics, initial conditions, and ongoing external inputs. As in recent deep learning approaches, our method is based on an input-driven sequential variational autoencoder (VAE). The main novelty lies in the use of the powerful iterative linear quadratic regulator algorithm (iLQR) in the recognition model. Optimization of the standard evidence lower-bound requires differentiating through iLQR solutions, which is made possible by recent advances in differentiable control. Importantly, having the recognition model implicitly defined by the generative model greatly reduces the number of free parameters and allows for flexible, high-quality inference. This makes it possible for instance to evaluate the model on a single long trial after training on smaller chunks. We demonstrate the effectiveness of iLQR-VAE on a range of synthetic systems, with autonomous as well as input-driven dynamics. We further show state-of-the-art performance on neural and behavioural recordings in non-human primates during two different reaching tasks.


2006 ◽  
Vol 16 (03) ◽  
pp. 497-522 ◽  
Author(s):  
WEIGUANG YAO ◽  
PEI YU ◽  
CHRISTOPHER ESSEX ◽  
MATT DAVISON

We investigate nonlinear dynamical systems from the mode competition point of view, and propose the necessary conditions for a system to be chaotic. We conjecture that a chaotic system has at least two competitive modes (CM's). For a general nonlinear dynamical system, we give a simple, dynamically motivated definition of mode suitable for this concept. Since for most chaotic systems it is difficult to obtain the form of a CM, we focus on the competition between the corresponding modulated frequency components of the CM's. Some direct applications result from the explicit form of the frequency functions. One application is to estimate parameter regimes which may lead to chaos. It is shown that chaos may be found by analyzing the frequency function of the CM's without applying a numerical integration scheme. Another application is to create new chaotic systems using custom-designed CM's. Several new chaotic systems are reported.


2012 ◽  
Vol 22 (1) ◽  
pp. 43-58
Author(s):  
Assen Krumov

Lagrange and practical stability criteria for dynamical systems with nonlinear perturbationsIn the paper two classes of nonlinear dynamical system with perturbations are considered. The sufficient conditions for robust Lagrange and practical stability are proven with theorems, applying the theory of nonlinear operators of the functional analysis. The presented criteria give also the bounds of the analyzed dynamical processes. Three examples comparing the numerical computer solutions and the analytical investigation of the stability of the systems are given. The method can be applied to analytical and computer modeling of nonlinear dynamical systems, synthesis of computer control and optimization.


Sign in / Sign up

Export Citation Format

Share Document