Distributed min-projection control: A switching consensus protocol for switched affine multi-agent systems

2020 ◽  
pp. 107754632097001
Author(s):  
Behzad Sinafar ◽  
Mohammad Ali Badamchizadeh ◽  
Hamed Kharrati ◽  
Mahdi Baradarannia

In this study, a distributed control problem is addressed for switched affine multi-agent systems. In dynamical systems with an affine control input, the use of error feedback is essential for the realization of consensus protocols, but different from most existing results with affine control multi-agent systems, switched affine multi-agent systems face additional difficulties in the analysis and control; meanwhile, affine diffusive coupling consensus algorithms are not applicable. For this reason, a switching signal is considered as a control mechanism. We study switched networks in which the leader’s state is accessible only for a portion of agents, and the Lyapunov matrix-based min-projection control strategy is proposed to determine the active mode for each agent based on the state information of the neighbors. Using parameter-dependent stability analysis, a range of different reference points can be tracked by distributed min-projection switching without any redesigning. Also, benefiting from the hybrid dynamical system, min-projection switch is modified such that a periodic time-triggered sampled control is introduced to obtain finite switching frequency. Finally, a multi-motor system fed by DC–DC buck–boost converters is simulated for a stepwise changing of leader signal and different dwell-time switching, and the effectiveness of proposed method is assessed.

2018 ◽  
Vol 41 (7) ◽  
pp. 1957-1964 ◽  
Author(s):  
Ming-Can Fan ◽  
Miaomiao Wang

This paper investigates the leaderless and leader-following consensus problem for a class of second-order multi-agent systems subject to input saturation, that is, the control input is required to be a priori bounded. Moreover, the control coefficients are assumed to be unavailable, which cannot be lower or upper bounded by any known constants. Distributed consensus protocols are proposed based only on agents’ own velocity state information and relative position state information among neighbouring agents and the leader. By virtue of the adaptive control technique, algebraic graph theory and Barbalat’s lemma, it is proved that the states of the multi-agent systems can achieve consensus under the assumption that the interconnection topology is undirected and connected. Finally, two simulation examples are provided to illustrate the effectiveness of the theoretical results.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Cui-Qin Ma ◽  
Yun-Bo Zhao ◽  
Wei-Guo Sun

Event-triggered bipartite consensus of single-integrator multi-agent systems is investigated in the presence of measurement noise. A time-varying gain function is proposed in the event-triggered bipartite consensus protocol to reduce the negative effects of the noise corrupted information processed by the agents. Using the state transition matrix, Ito^ formula, and the algebraic graph theory, necessary and sufficient conditions are given for the proposed protocol to yield mean square bipartite consensus. We find that the weakest communication requirement to ensure the mean square bipartite consensus under event-triggered protocol is that the signed digraph is structurally balanced and contains a spanning tree. Numerical examples validated the theoretical findings where the system shows no Zeno behavior.


2019 ◽  
Vol 13 (6) ◽  
pp. 755-762 ◽  
Author(s):  
Xiurong Chen ◽  
Juan Li ◽  
Ziku Wu ◽  
Jiashang Yu

Author(s):  
Yangzhou Chen ◽  
Guangyue Xu ◽  
Jingyuan Zhan

This paper studies the leader-following state consensus problem for heterogeneous linear multi-agent systems under fixed directed communication topologies. First, we propose a consensus protocol consisting of four parts for high-order multi-agent systems, in which different agents are allowed to have different gain matrices so as to increase the degree of design freedom. Then, we adopt a state linear transformation, which is constructed based on the incidence matrix of a directed spanning tree of the communication topology, to equivalently transform the state consensus problem into a partial variable stability problem. Meanwhile, the results of the partial variable stability theory are used to derive a sufficient and necessary consensus criterion, expressed as the Hurwitz stability of a real matrix. Then, this criterion is further expressed as a bilinear matrix inequality condition, and, based on this condition, an iterative algorithm is proposed to find the gain matrices of the protocol. Finally, numerical examples are provided to verify the effectiveness of the proposed protocol design method.


Symmetry ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1519 ◽  
Author(s):  
Rawad Abdulghafor ◽  
Sultan Almotairi ◽  
Hamad Almohamedh ◽  
Sherzod Turaev ◽  
Badr Almutairi

This article explores nonlinear convergence to limit the effects of the consensus problem that usually occurs in multi-agent systems. Most of the existing research essentially considers the outline of linear protocols, using complex mathematical equations in various orders. In this work, however, we designed and developed an alternative nonlinear protocol based on simple and effective mathematical approaches. The designed protocol in this sense was modified from the Doubly Stochastic Quadratic Operators (DSQO) and was aimed at resolving consensus problems. Therefore, we called it Modified Doubly Stochastic Quadratic Operators (MDSQO). The protocol was derived in the context of coordinated systems to overcome the consensus issue related to multi-agent systems. In the process, we proved that by using the proposed nonlinear protocol, the consensus could be reached via a common agreement among the agents (average consensus) in a fast and easy fashion without losing any initial status. Moreover, the investigated nonlinear protocol of MDSQO realized the reaching consensus always as well as DSQO in some cases, which could not reach consensus. Finally, simulation results were given to prove the validity of the theoretical analysis.


Sign in / Sign up

Export Citation Format

Share Document