Rolling element bearing multi-fault diagnosis using morphological joint time–frequency adaptive kernel–based semi-smart framework

2021 ◽  
pp. 107754632110228
Author(s):  
Sunil Lonare ◽  
Neville Fernandes ◽  
Aditya Abhyankar

The wavelet transform is a state of the art time–frequency analysis method for rolling element bearing localized fault detection, using vibration signals. When these localized faults are present at more than one location of bearing, it is called “multi-fault.” Using wavelet transform fault detection with high severity is possible, but this method fails to detect the presence of fault as well as the location of a fault in multi-fault case and when the fault severity is low. The identification of the fault location, in rolling element bearing when more than one location of bearing contains a localized fault, is very useful for further root cause analysis; therefore, multi-fault detection is a challenge today. In the present work, a new morphological joint time–frequency adaptive kernel–based semi-smart framework is developed to address this challenge. In morphological joint time–frequency adaptive kernel, the kernel will adapt itself by analyzing the basic morphology of the bearing under observation and by considering the location of a fault. The simulation and experimental results show that morphological joint time–frequency adaptive kernel–based framework is able to detect low severity single fault as well as the location of the localized fault on rolling element bearing in the multi-fault case. Experimental results also show that the morphological joint time–frequency adaptive kernel framework is independent of bearing dimensions as well as machine operating conditions.

2011 ◽  
Vol 199-200 ◽  
pp. 931-935 ◽  
Author(s):  
Ning Li ◽  
Rui Zhou

Wavelet transform has been widely used for the vibration signal based rolling element bearing fault detection. However, the problem of aliasing inhering in discrete wavelet transform restricts its further application in this field. To overcome this deficiency, a novel fault detection method for roll element bearing using redundant second generation wavelet packet transform (RSGWPT) is proposed. Because of the absence of the downsampling and upsampling operations in the redundant wavelet transform, the aliasing in each subband signal is alleviated. Consequently, the signal in each subband can be characterized by the extracted features more effectively. The proposed method is applied to analyze the vibration signal measured from a faulty bearing. Testing results confirm that the proposed method is effective in extracting weak fault feature from a complex background.


Author(s):  
Dong Sik Gu ◽  
Byeong Keun Choi ◽  
Byeong Su Kim ◽  
Jeong Hwan Lee ◽  
Jong Duk Son ◽  
...  

Vibration analysis is widely used in machinery diagnosis and the wavelet transform has also been implemented in many applications in the condition monitoring of machinery. In contrast to previous applications, this paper examines whether acoustic signal can be used effectively along vibration signal to detect the various local fault, in local fault of gearboxes using the wavelet transform. Moreover, envelop analysis is well known as useful tool for the detection of rolling element bearing fault. In this paper, acoustic emission (AE) sensor is employed to detect gearbox damage by installing them around bearing housing at driven-end side. Signal processing is conducted by wavelet transform and enveloping to detect the fault all at once gearbox and bearing using AE signal. Result of fault detection is presented using some general statistical features and a proposed new feature (RGF: Ratio of Gear Frequency) for gear fault calculated from AE signal with different condition.


Author(s):  
Dustin Helm ◽  
Markus Timusk

This work proposes a methodology for the detection of rolling-element bearing faults in quasi-parallel machinery. In the context of this work, parallel machinery is considered to be any group of identical components of a mechanical system that are linked to operate on the same duty cycle.  Quasi-parallel machinery can further be defined as two components not identical mechanically, but their operating conditions are correlated and they operate in the same environmental conditions. Furthermore, a new fault detection architecture is proposed wherein a feed-forward neural network (FFNN) is utilized to identify the relationship between signals. The proposed technique is based on the analysis of a calculated residual between feature vectors from two separate components. This technique is designed to reduce the effects of changes in the machines operating state on the condition monitoring system. When a fault detection system is monitoring multiple components in a larger system that are mechanically linked, signals and information that can be gleaned from the system can be used to reduce influences from factors that are not related to condition. The FFNN is used to identify the relationship between the feature vectors from two quasi-parallel components and eliminate the difference when no fault is present. The proposed method is tested on vibration data from two gearboxes that are connected in series. The gearboxes contain bearings operating at different speeds and gear mesh frequencies. In these conditions, a variety of rolling-element bearing faults are detected. The results indicate that improvement in fault detection accuracy can be achieved by using the additional information available from the quasi-parallel machine. The proposed method is directly compared to a typical AANN novelty detection scheme.


Author(s):  
O. P. Yadav ◽  
G.L. Pahuja

Objectives: The main objectives of this manuscript are to investigate and diagnose rolling element bearing defects in its inception time. Methods: Vibration signal generated by induction motor contains series of frequency components that have rich and viable information about bearing health conditions. Recently, maximum energy concentration (MEC) measure of time-frequency spectrum has been employed to investigate the small variations in low frequency biomedical signal spectrum. In this paper, the above technique has been modified and applied to study the bearing defects of induction motor using vibration signal and it is termed as adaptive modified Morlet wavelet (AMMW) transform. Initially, this proposed method was validated on two medium frequency synthetic time series signals in terms of MEC measurement at different signal to noise ratio (SNR). Results: The simulated results have depicted that AMMW method provides excellent time-frequency localization capability over other time-frequency methods like Morlet wavelet transform, modified Morlet wavelet transform, adaptive S-transform and adaptive modified S-transform. Then this method has been applied on standard database of vibration signal to determine of interquartile power for fault detection purpose and also fault index parameter termed as has been analyzed to detect small variation in vibration signals.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Guang-Quan Hou ◽  
Chang-Myung Lee

Fault diagnosis and failure prognostics for rolling element bearing are helpful for preventing equipment failure and predicting the remaining useful life (RUL) to avoid catastrophic failure. Spall size is an important fault feature for RUL prediction, and most research work has focused on estimating the fault size under constant speed conditions. However, estimation of the defect width under time-varying speed conditions is still a challenge. In this paper, a method is proposed to solve this problem. To enhance the entry and exit events, the edited cepstrum is used to remove the determined components. The preprocessed signal is resampled from the time domain to the angular domain to eliminate the effect of speed variation and measure the defect size of a rolling element bearing on outer race. Next, the transient impulse components are extracted by local mean decomposition. The entry and exit points when the roller passes over the defect width on the outer race were identified by further processing the extracted signal with time-frequency analysis based on the continuous wavelet transform. The defect size can be calculated with the angle duration, which is measured from the identified entry and exit points. The proposed method was validated experimentally.


2001 ◽  
Vol 123 (3) ◽  
pp. 303-310 ◽  
Author(s):  
Peter W. Tse ◽  
Y. H. Peng ◽  
Richard Yam

The components which often fail in a rolling element bearing are the outer-race, the inner-race, the rollers, and the cage. Such failures generate a series of impact vibrations in short time intervals, which occur at Bearing Characteristic Frequencies (BCF). Since BCF contain very little energy, and are usually overwhelmed by noise and higher levels of macro-structural vibrations, they are difficult to find in their frequency spectra when using the common technique of Fast Fourier Transforms (FFT). Therefore, Envelope Detection (ED) is always used with FFT to identify faults occurring at the BCF. However, the computation of ED is complicated, and requires expensive equipment and experienced operators to process. This, coupled with the incapacity of FFT to detect nonstationary signals, makes wavelet analysis a popular alternative for machine fault diagnosis. Wavelet analysis provides multi-resolution in time-frequency distribution for easier detection of abnormal vibration signals. From the results of extensive experiments performed in a series of motor-pump driven systems, the methods of wavelet analysis and FFT with ED are proven to be efficient in detecting some types of bearing faults. Since wavelet analysis can detect both periodic and nonperiodic signals, it allows the machine operator to more easily detect the remaining types of bearing faults which are impossible by the method of FFT with ED. Hence, wavelet analysis is a better fault diagnostic tool for the practice in maintenance.


Sign in / Sign up

Export Citation Format

Share Document