A Fluorescence Polarization Assay for Cyclic Nucleotide Phosphodiesterases

2002 ◽  
Vol 7 (3) ◽  
pp. 215-222 ◽  
Author(s):  
Wei Huang ◽  
Yan Zhang ◽  
J. Richard Sportsman

Cyclic nucleotide phosphodiesterases (PDEs) catalyze the hydrolysis of the 3′-ester bond of cyclic AMP (cAMP) and cyclic GMP (cGMP), important second messengers in the transduction of a variety of extracellular signals. There is growing interest in the study of PDEs as drug targets for novel therapeutics. We describe the development of a homogeneous fluorescence polarization assay for PDEs based on the strong binding of PDE reaction products (i.e., AMP or GMP) onto modified nanoparticles through interactions with immobilized trivalent metal cations. This assay technology (IMAP) is applicable to both cAMP- and cGMP-specific PDEs. Results of the assay in 384- and 1536-well microplates are presented.

1999 ◽  
Vol 82 (08) ◽  
pp. 407-411 ◽  
Author(s):  
E. Degerman ◽  
V. C. Manganiello

IntroductionCyclic adenosine 3’5’-monophosphate (cAMP) and cyclic guanosine 3’5’-monophoshpate (cGMP) are critical intracellular second-messengers involved in the transduction of a wide variety of extracellular stimuli, including peptide hormones, growth factors, cytokines, neurotransmitters and light. These messengers modulate many fundamental biological processes, including growth, differentiation, apoptosis, glycogenolysis, lipolysis, immune/inflammatory responses, etc.By catalyzing hydrolysis of cAMP and cGMP, cyclic nucleotide phosphodiesterases (PDEs) are important determinants in regulating the intracellular concentrations and, consequently, the biological actions of these second-messengers (Fig. 1). The advent of molecular genetics has revealed the extraordinary complexity and diversity of the mammalian PDE superfamily, which contains at least 10 highly regulated and structurally-related gene families (PDEs 1-10).1-8 As depicted in Figure 1, some PDEs are highly specific for hydrolysis of cAMP (PDEs 4,7,8), some are cGMP-specific (PDEs 5,6,9), and some exhibit mixed specificity (PDEs 1,2,3,10). Most gene families are comprised of more than one isogene (indicated by A-D in Table 1). At least 19 genes encoding more than 30 isoforms have been identified. PDE families differ with respect to their primary structures, sensitivity to specific inhibitors, tissue distribution, subcellular localization, and mechanisms of regulation (Table 1).2-6 Within individual families, different mRNAs are generated from the same gene by use of different transcription initiation sites or by alternative mRNA splicing. These variant PDE isoforms are often tissue-specific and selectively expressed in various tissues and cell types.2-6 The importance of cyclic nucleotide signaling in cell regulation and the molecular diversity of PDEs has presented targets for selective interventions and development of family-specific PDE inhibitors as therapeutic agents. This brief review will discuss some general characteristics of PDEs and then focus on the cellular biology and diverse functions of different PDE isoforms and their potential as therapeutic targets.


2019 ◽  
Vol 2019 (4) ◽  
Author(s):  
Chen Yan

3',5'-Cyclic nucleotide phosphodiesterases (PDEs, 3',5'-cyclic-nucleotide 5'-nucleotidohydrolase), E.C. 3.1.4.17, catalyse the hydrolysis of a 3',5'-cyclic nucleotide (usually cyclic AMP or cyclic GMP). isobutylmethylxanthine is a nonselective inhibitor with an IC50 value in the millimolar range for all isoforms except PDE 8A, 8B and 9A. A 2',3'-cyclic nucleotide 3'-phosphodiesterase (E.C. 3.1.4.37 CNPase) activity is associated with myelin formation in the development of the CNS.


2014 ◽  
Vol 42 (2) ◽  
pp. 250-256 ◽  
Author(s):  
Donald H. Maurice ◽  
Lindsay S. Wilson ◽  
Sarah N. Rampersad ◽  
Fabien Hubert ◽  
Tammy Truong ◽  
...  

The cyclic nucleotide second messengers cAMP and cGMP each affect virtually all cellular processes. Although these hydrophilic small molecules readily diffuse throughout cells, it is remarkable that their ability to activate their multiple intracellular effectors is spatially and temporally selective. Studies have identified a critical role for compartmentation of the enzymes which hydrolyse and metabolically inactivate these second messengers, the PDEs (cyclic nucleotide phosphodiesterases), in this specificity. In the present article, we describe several examples from our work in which compartmentation of selected cAMP- or cGMP-hydrolysing PDEs co-ordinate selective activation of cyclic nucleotide effectors, and, as a result, selectively affect cellular functions. It is our belief that therapeutic strategies aimed at targeting PDEs within these compartments will allow greater selectivity than those directed at inhibiting these enzymes throughout the cells.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Chen Yan

3',5'-Cyclic nucleotide phosphodiesterases (PDEs, 3',5'-cyclic-nucleotide 5'-nucleotidohydrolase), E.C. 3.1.4.17, catalyse the hydrolysis of a 3',5'-cyclic nucleotide (usually cyclic AMP or cyclic GMP). isobutylmethylxanthine is a nonselective inhibitor with an IC50 value in the millimolar range for all isoforms except PDE 8A, 8B and 9A. A 2',3'-cyclic nucleotide 3'-phosphodiesterase (E.C. 3.1.4.37 CNPase) activity is associated with myelin formation in the development of the CNS.


1979 ◽  
Vol 28 (8) ◽  
pp. 1307-1312 ◽  
Author(s):  
Richard G. van Inwegen ◽  
Phyllis Salaman ◽  
Vassil St. Georgiev ◽  
Ira Weinryb

Sign in / Sign up

Export Citation Format

Share Document