fluorescence polarization assay
Recently Published Documents


TOTAL DOCUMENTS

224
(FIVE YEARS 30)

H-INDEX

29
(FIVE YEARS 3)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gangan Yan ◽  
Dongsheng Li ◽  
Yuan Lin ◽  
Zhenghao Fu ◽  
Haiyan Qi ◽  
...  

Abstract Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly transmissible and has caused a pandemic named coronavirus disease 2019 (COVID-19), which has quickly spread worldwide. Although several therapeutic agents have been evaluated or approved for the treatment of COVID-19 patients, efficacious antiviral agents are still lacking. An attractive therapeutic target for SARS-CoV-2 is the main protease (Mpro), as this highly conserved enzyme plays a key role in viral polyprotein processing and genomic RNA replication. Therefore, the identification of efficacious antiviral agents against SARS-CoV-2 Mpro using a rapid, miniaturized and economical high-throughput screening (HTS) assay is of the highest importance at the present. Results In this study, we first combined the fluorescence polarization (FP) technique with biotin-avidin system (BAS) to develop a novel and step-by-step sandwich-like FP screening assay to quickly identify SARS-CoV-2 Mpro inhibitors from a natural product library. Using this screening assay, dieckol, a natural phlorotannin component extracted from a Chinese traditional medicine Ecklonia cava, was identified as a novel competitive inhibitor against SARS-CoV-2 Mpro in vitro with an IC50 value of 4.5 ± 0.4 µM. Additionally, dieckol exhibited a high affinity with SARS-CoV-2 Mpro using surface plasmon resonance (SPR) analysis and could bind to the catalytic sites of Mpro through hydrogen-bond interactions in the predicted docking model. Conclusions This innovative sandwich-like FP screening assay enables the rapid discovery of antiviral agents targeting viral proteases, and dieckol will be an excellent lead compound for generating more potent and selective antiviral agents targeting SARS-CoV-2 Mpro.


2021 ◽  
Vol 21 (2) ◽  
pp. 523-530
Author(s):  
Jean Bosco Ntirandekura ◽  
Lucas Eliaimringi Matemba ◽  
Sharadhuli Iddi Kimera ◽  
John Bwayla Muma ◽  
Esron Daniel Karimuribo

Background: Brucellosis is an important disease for both veterinary and public health. A study was conducted to under- stand the seroprevalence of brucellosis and its associated risk factors in pastoral areas of Kagera, Tanzania. Methods: Sera from 156 patients with malaria-like symptoms were analyzed using the commercial rapid agglutination test (specific for B.abortus and B.melitensis detection) and Fluorescence Polarization Assay (FPA). Sera from 426 cattle, 206 goats and 197 sheep were analyzed using Rose Bengal Plate (RBPT) and Competitive ELISA (c-ELISA) tests. Results: In humans, overall brucellosis, B. abortus, and B. melitensis sero-prevalences were 7.7% (95%CI: 3.8-12.2%), 1.9% (95% CI: 0.4-4.5%), and 5.8 % (95%CI: 2.6-10.6%), respectively. At animal level, seropositivity was 5.9% (95%CI: 4.0-8.6%), 2.5% (95%CI: 0.8-5.7%) and 0.5% (95%CI: 0.01-2.8%) in cattle, goats and sheep, respectively. At herd level, seropositivity was 18.2% (95%CI: 12.0-25.8%) in cattle and 6.9% (95%CI: 2.2-15.3%) in small ruminants. Brucellosis was associated with assisting in parturition without wearing protective gears (OR= 5.6; p= 0.02) in humans, herds of 50-200 animals (OR= 4.2, p= 0.01) and cattle (OR=3.5; p=0.01). The knowledge of brucellosis among pastoralists (OR=0.1; p<0.01) was a protective factor. Conclusion: Brucella infections could be occurring in pastoralists and domestic ruminants in Kagera. Community health education is necessary for the control of brucellosis in Tanzania. Keywords: Brucellosis; pastoralists; risk factors; Tanzania.


2021 ◽  
Vol 8 ◽  
Author(s):  
Alyssa B. Helms ◽  
Orsolya Balogh ◽  
Rebecca Franklin-Guild ◽  
Kevin Lahmers ◽  
Clayton C. Caswell ◽  
...  

Brucellosis is a zoonotic disease caused by a Gram-negative coccobacillus. There are four Brucella strains of zoonotic importance in our domestic species, subdivided by their culture phenotypes: Brucella abortus (B. abortus), B. melitensis, B. suis (smooth strains) and B. canis (rough strain). Dogs can serve as hosts for all four of the zoonotic strains; however, routine serologic testing in dogs has been limited to the identification of B. canis antibodies. The aim of our study was to identify smooth Brucella strain antibodies in canines. We hypothesize that the Brucella abortus Fluorescence Polarization Assay would be successful in identifying smooth Brucella strain antibodies in canines. Ninety-five dogs, including forty-five hog hunting dogs were screened for circulating antibodies to any of the four zoonotic strains of the bacteria utilizing a combination of Canine Brucella Slide Agglutination Test (CBSA), Brucella canis Agar Gel Immunodiffusion II test (AGIDII), Brucella abortus Card Agglutination Test (BCA), and the Brucella abortus Fluorescence Polarization Assay (FPA). Test interpretation results yielded a 0% (0/95) smooth Brucella strain seropositivity rate, with 2% (2/95) of dogs yielding inconclusive rough Brucella strain serology results (0–2% rough strain seropositivity rate). Additionally, a retrospective portion of the study was performed to identify sera containing circulating antibodies to any of the smooth strains of Brucella by testing previously banked canine serum samples stored at Cornell's Veterinary Diagnostic Laboratory from 2018 to 2019 via Brucella abortus FPA. Of the 769 serum samples tested, 13/769 (1.7%) yielded an inconclusive result, 725/769 (94.2%) were negative, 30/769 (4%) yielded a positive FPA test result, and 1/769 (0.1%) had to be excluded due to insufficient sample remaining to perform the diagnostic test. Of the 30 FPA positive canine serum samples, 97% (29/30) also tested positive on the CBSA test. Additionally, there was a statistically significant (p &lt; 0.0001) likelihood of altered (spayed/neutered) and mixed breed dogs to be FPA positive when compared to intact, purebred dogs, respectively.


2021 ◽  
Vol 22 (10) ◽  
pp. 5242
Author(s):  
Nikhil K. Tulsian ◽  
Valerie Jia-En Sin ◽  
Hwee-Ling Koh ◽  
Ganesh S. Anand

Phosphodiesterases (PDEs) hydrolyze cyclic nucleotides to modulate multiple signaling events in cells. PDEs are recognized to actively associate with cyclic nucleotide receptors (protein kinases, PKs) in larger macromolecular assemblies referred to as signalosomes. Complexation of PDEs with PKs generates an expanded active site that enhances PDE activity. This facilitates signalosome-associated PDEs to preferentially catalyze active hydrolysis of cyclic nucleotides bound to PKs and aid in signal termination. PDEs are important drug targets, and current strategies for inhibitor discovery are based entirely on targeting conserved PDE catalytic domains. This often results in inhibitors with cross-reactivity amongst closely related PDEs and attendant unwanted side effects. Here, our approach targeted PDE–PK complexes as they would occur in signalosomes, thereby offering greater specificity. Our developed fluorescence polarization assay was adapted to identify inhibitors that block cyclic nucleotide pockets in PDE–PK complexes in one mode and disrupt protein-protein interactions between PDEs and PKs in a second mode. We tested this approach with three different systems—cAMP-specific PDE8–PKAR, cGMP-specific PDE5–PKG, and dual-specificity RegA–RD complexes—and ranked inhibitors according to their inhibition potency. Targeting PDE–PK complexes offers biochemical tools for describing the exquisite specificity of cyclic nucleotide signaling networks in cells.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A1031-A1031
Author(s):  
Julie A Pollock ◽  
Courtney L Labrecque ◽  
Cassidy N Hilton ◽  
Justin Airas ◽  
Alexis Blake ◽  
...  

Abstract MEMO1 (mediator of ErbB2-driven cell motility) is upregulated in breast tumors and has been correlated with poor prognosis in patients. As a scaffolding protein that binds to phosphorylated-tyrosine residues on receptors such as estrogen receptor and ErbB2, MEMO1 levels can influence phosphorylation cascades. Using our previously developed fluorescence polarization assay, we have identified small molecules with the ability to disrupt the interactions of MEMO1. We have performed limited structure-activity-relationship studies and computational analyses to investigate the molecular requirements for MEMO1 inhibition. The most promising compounds exhibit slowed migration of breast cancer cell lines (T47D and SKBR3) in a wound-healing assay emulating results obtained from the knockdown of MEMO1 protein. To our knowledge, these are the first small molecules targeting the MEMO1 protein-protein interface and therefore, will be invaluable tools for the investigation of the role of the MEMO1 in breast cancer and other biological contexts.


Author(s):  
Nikhil Kumar Tulsian ◽  
Valerie Jia-En Sin ◽  
Ganesh Srinivasan Anand ◽  
Hwee-Ling Koh

Phosphodiesterases (PDEs) hydrolyze cyclic nucleotides to modulate multiple signaling events in cells. PDEs are recognized to actively associate with cyclic nucleotide receptors (Protein Kinases, PK) in larger macromolecular assemblies referred to as signalosomes. Complexation of PDEs with PK generates an expanded active site which enhances PDE activity. This facilitates signalosome-associated PDEs to preferentially catalyze active hydrolysis of cyclic nucleotides bound to PK, and aid in signal termination. PDEs are important drug targets and current strategies for inhibitor discovery are based entirely on targeting conserved PDE catalytic domains. This often results in inhibitors with cross-reactivity amongst closely related PDEs and attendant unwanted side effects. Here, our approach targets PDE-PK complexes as they would occur in signalosomes, thereby offering greater specificity. Our developed fluorescence polarization assay has been adapted to identify inhibitors that block cyclic nucleotide pockets in PDE-PK complexes in one mode, and disrupt protein-protein interactions between PDEs and cyclic nucleotide activating protein kinases in a second mode. We tested this approach with three different systems: cAMP-specific PDE8-PKAR, cGMP-specific PDE5-PKG and dual-specificity RegA-RD complexes and ranked inhibitors according to their inhibition potency. Targeting PDE-PK complexes offers biochemical tools for describing the exquisite specificity of cyclic nucleotide signaling networks in cells.


2021 ◽  
Author(s):  
Sergio Hernández ◽  
Mikael Feracci ◽  
Carolina Trajano De Jesus ◽  
Priscila El-Kazzi ◽  
Rafik Kaci ◽  
...  

AbstractViral exoribonucleases are uncommon in the world of RNA viruses. To date, this activity has been identified only in the Arenaviridae and the Coronaviridae families. These exoribonucleases play important but different roles in both families: for mammarenaviruses the exoribonuclease is involved in the suppression of the host immune response whereas for coronaviruses, exoribonuclease is both involved in a proofreading mechanism ensuring the genetic stability of viral genomes and participating to evasion of the host innate immunity. Because of their key roles, they constitute attractive targets for drug development. Here we present a high-throughput assay using fluorescence polarization to assess the viral exoribonuclease activity and its inhibition. We validate the assay using three different viral enzymes from SARS-CoV-2, lymphocytic choriomeningitis and Machupo viruses. The method is sensitive, robust, amenable to miniaturization (384 well plates) and allowed us to validate the proof-of-concept of the assay by screening a small focused compounds library (23 metal chelators). We also determined the IC50 of one inhibitor common to the three viruses.HighlightsArenaviridae and Coronaviridae viral families share an exoribonuclease activity of common evolutionary originArenaviridae and Coronaviridae exoribonuclease is an attractive target for drug developmentWe present a high-throughput assay in 384 well-plates for the screening of inhibitors using fluorescence polarizationWe validated the assay by screening of a focused library of 23 metal chelators against SARS-CoV-2, Lymphocytic Choriomeningitis virus and Machupo virus exoribonucleasesWe determined the IC50 by fluorescence polarization of one inhibitor common to the three viruses.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Shuai-Bing Dong ◽  
Di Xiao ◽  
Jing-Yao Liu ◽  
Hui-Mei Bi ◽  
Zun-Rong Zheng ◽  
...  

Abstract Background Brucellosis is an infectious-allergic zoonotic disease caused by bacteria of the genus Brucella. Early diagnosis is the key to preventing, treating, and controlling brucellosis. Fluorescence polarization immunoassay (FPA) is a new immunoassay for relatively rapid and accurate detection of antibodies or antigens based on antigen–antibody interaction. However, there is no report on FPA-based detection of human brucellosis in China. Therefore, this study is to evaluate the value of FPA for the diagnosis of human brucellosis in China. Methods We recruited 320 suspected brucellosis cases who had the clinical symptoms and epidemiological risk factors between January and December, 2019. According to China Guideline for Human Brucellosis Diagnosis, the Rose Bengal test (RBT) was used for the screening test, and the serum agglutination test (SAT) was used as the confirmatory test. Brucellosis was confirmed only if the results of both tests were positive. Additionally, FPA and enzyme linked immune sorbent assay (ELISA) were compared with SAT, and their sensitivity, specificity, coincidence rate and consistency coefficient (Kappa value) as diagnostic tests were analyzed individually and in combination. The optimal cut-off value of FPA was also determined using the receiver operator characteristic (ROC) curve. Results The optimum cut-off value of FPA was determined to be 88.5 millipolarization (mP) units, with a sensitivity of 94.5% and specificity of 100.0%. Additionally, the coincidence rate with the SAT test was 96.6%, and the Kappa value (0.9) showed excellent consistency. The sensitivity and specificity of FPA and ELISA combined were higher at 98.0% and 100.0% respectively. Conclusions When the cut-off value of FPA test is set at 88.5 mP, it has high value for the diagnosis of brucellosis. Additionally, when FPA and ELISA are combined, the sensitivity of diagnosis is significantly improved. Thus, FPA may have potential in the future as a diagnostic method for human brucellosis in China. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document