scholarly journals A Mechanism for the Development of Chronic Traumatic Encephalopathy From Persistent Traumatic Brain Injury

2019 ◽  
Vol 13 ◽  
pp. 117906951984993 ◽  
Author(s):  
Melissa Demock ◽  
Steven Kornguth

A mechanism that describes the progression of traumatic brain injury (TBI) to end-stage chronic traumatic encephalopathy (CTE) is offered in this article. This mechanism is based upon the observed increase in the concentration of both tau protein and of human leukocyte antigen (HLA) class I proteins; the HLA increase is expressed on the cell membrane of neural cells. These events follow the inflammatory responses caused by the repetitive TBI. Associated inflammatory changes include macrophage entry into the brain parenchyma from increased permeability of the blood-brain barrier (BBB) and microglial activation at the base of the sulci. The release of interferon gamma from the microglia and macrophages induces the marked increased expression of HLA class I proteins by the neural cells and subsequent redistribution of the tau proteins to the glial and neuronal surface. In those individuals with highly expressed HLA class I C, the high level of HLA binds tau protein electrostatically. The ionic region of HLA class I C (amino acid positions 50-90) binds to the oppositely charged ionic region of tau (amino acid positions 93-133). These interactions thereby shift the cellular localization of the tau and orient the tau spatially so that the cross-linking sites of tau (275-280 and 306-311) are aligned. This alignment facilitates the cross-linking of tau to form the intracellular and extracellular microfibrils of tau, the primary physiological characteristic of tauopathy. Following endocytosis of the membrane HLA/tau complex, these microfibrils accumulate and produce a tau-storage-like disease. Therefore, tauopathy is the secondary collateral process of brain injury, resulting from the substantial increase in tau and HLA expression on neural cells. This proposed mechanism suggests several potential targets for mitigating the clinical progression of TBI to CTE.

Author(s):  
Nicole L. Ackermans ◽  
Merina Varghese ◽  
Bridget Wicinski ◽  
Joshua Torres ◽  
Rita De Gasperi ◽  
...  

Biomarkers ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 213-227 ◽  
Author(s):  
Matthew I. Hiskens ◽  
Anthony G. Schneiders ◽  
Mariana Angoa-Pérez ◽  
Rebecca K. Vella ◽  
Andrew S. Fenning

2020 ◽  
Vol 16 (8) ◽  
pp. e1008818
Author(s):  
Monica Dallmann-Sauer ◽  
Vinicius M. Fava ◽  
Chaïma Gzara ◽  
Marianna Orlova ◽  
Nguyen Van Thuc ◽  
...  

2018 ◽  
Vol 89 (10) ◽  
pp. A42.1-A42
Author(s):  
Graham Neil SN ◽  
Jolly Amy E ◽  
Bourke Niall J ◽  
Scott Gregory ◽  
Cole James H ◽  
...  

BackgroundDementia rates are elevated after traumatic brain injury (TBI) and a subgroup develops chronic traumatic encephalopathy. Post-traumatic neurodegeneration can be measured by brain atrophy rates derived from neuroimaging, but it is unclear how atrophy relates to the initial pattern of injury.ObjectivesTo investigate the relationship between baseline TBI patterns and subsequent neurodegeneration measured by progressive brain atrophy.Methods55 patients after moderate-severe TBI (mean 3 years post-injury) and 20 controls underwent longitudinal MRI. Brain atrophy was quantified using the Jacobian determinant defined from volumetric T1 scans approximately one year apart. Diffuse axonal injury was measured using diffusion tensor imaging and focal injuries defined from T1 and FLAIR. Neuropsychological assessment was performed.ResultsAbnormal progressive brain atrophy was seen after TBI (~1.8%/year in white matter). This was accompanied by widespread reductions in fractional anisotropy, in keeping with the presence of diffuse axonal injury. There was a strong negative correlation between FA and brain atrophy, whereby areas of greater white matter damage showed greater atrophy over time.ConclusionsThe results show a strong relationship between the location of diffuse axonal injury and subsequent neurodegeneration. This suggests that TBI triggers progressive neurodegeneration through the long-lasting effects of diffuse axonal injury.


Sign in / Sign up

Export Citation Format

Share Document