281 Predicting neurodegeneration after traumatic brain injury

2018 ◽  
Vol 89 (10) ◽  
pp. A42.1-A42
Author(s):  
Graham Neil SN ◽  
Jolly Amy E ◽  
Bourke Niall J ◽  
Scott Gregory ◽  
Cole James H ◽  
...  

BackgroundDementia rates are elevated after traumatic brain injury (TBI) and a subgroup develops chronic traumatic encephalopathy. Post-traumatic neurodegeneration can be measured by brain atrophy rates derived from neuroimaging, but it is unclear how atrophy relates to the initial pattern of injury.ObjectivesTo investigate the relationship between baseline TBI patterns and subsequent neurodegeneration measured by progressive brain atrophy.Methods55 patients after moderate-severe TBI (mean 3 years post-injury) and 20 controls underwent longitudinal MRI. Brain atrophy was quantified using the Jacobian determinant defined from volumetric T1 scans approximately one year apart. Diffuse axonal injury was measured using diffusion tensor imaging and focal injuries defined from T1 and FLAIR. Neuropsychological assessment was performed.ResultsAbnormal progressive brain atrophy was seen after TBI (~1.8%/year in white matter). This was accompanied by widespread reductions in fractional anisotropy, in keeping with the presence of diffuse axonal injury. There was a strong negative correlation between FA and brain atrophy, whereby areas of greater white matter damage showed greater atrophy over time.ConclusionsThe results show a strong relationship between the location of diffuse axonal injury and subsequent neurodegeneration. This suggests that TBI triggers progressive neurodegeneration through the long-lasting effects of diffuse axonal injury.

2019 ◽  
Vol 13 ◽  
pp. 117906951985862 ◽  
Author(s):  
Wouter S Hoogenboom ◽  
Todd G Rubin ◽  
Kenny Ye ◽  
Min-Hui Cui ◽  
Kelsey C Branch ◽  
...  

Mild traumatic brain injury (mTBI), also known as concussion, is a serious public health challenge. Although most patients recover, a substantial minority suffers chronic disability. The mechanisms underlying mTBI-related detrimental effects remain poorly understood. Although animal models contribute valuable preclinical information and improve our understanding of the underlying mechanisms following mTBI, only few studies have used diffusion tensor imaging (DTI) to study the evolution of axonal injury following mTBI in rodents. It is known that DTI shows changes after human concussion and the role of delineating imaging findings in animals is therefore to facilitate understanding of related mechanisms. In this work, we used a rodent model of mTBI to investigate longitudinal indices of axonal injury. We present the results of 45 animals that received magnetic resonance imaging (MRI) at multiple time points over a 2-week period following concussive or sham injury yielding 109 serial observations. Overall, the evolution of DTI metrics following concussive or sham injury differed by group. Diffusion tensor imaging changes within the white matter were most noticeable 1 week following injury and returned to baseline values after 2 weeks. More specifically, we observed increased fractional anisotropy in combination with decreased radial diffusivity and mean diffusivity, in the absence of changes in axial diffusivity, within the white matter of the genu corpus callosum at 1 week post-injury. Our study shows that DTI can detect microstructural white matter changes in the absence of gross abnormalities as indicated by visual screening of anatomical MRI and hematoxylin and eosin (H&E)-stained sections in a clinically relevant animal model of mTBI. Whereas additional histopathologic characterization is required to better understand the neurobiological correlates of DTI measures, our findings highlight the evolving nature of the brain’s response to injury following concussion.


Brain ◽  
2020 ◽  
Author(s):  
Neil S N Graham ◽  
Amy Jolly ◽  
Karl Zimmerman ◽  
Niall J Bourke ◽  
Gregory Scott ◽  
...  

Abstract Traumatic brain injury is associated with elevated rates of neurodegenerative diseases such as Alzheimer’s disease and chronic traumatic encephalopathy. In experimental models, diffuse axonal injury triggers post-traumatic neurodegeneration, with axonal damage leading to Wallerian degeneration and toxic proteinopathies of amyloid and hyperphosphorylated tau. However, in humans the link between diffuse axonal injury and subsequent neurodegeneration has yet to be established. Here we test the hypothesis that the severity and location of diffuse axonal injury predicts the degree of progressive post-traumatic neurodegeneration. We investigated longitudinal changes in 55 patients in the chronic phase after moderate–severe traumatic brain injury and 19 healthy control subjects. Fractional anisotropy was calculated from diffusion tensor imaging as a measure of diffuse axonal injury. Jacobian determinant atrophy rates were calculated from serial volumetric T1 scans as a measure of measure post-traumatic neurodegeneration. We explored a range of potential predictors of longitudinal post-traumatic neurodegeneration and compared the variance in brain atrophy that they explained. Patients showed widespread evidence of diffuse axonal injury, with reductions of fractional anisotropy at baseline and follow-up in large parts of the white matter. No significant changes in fractional anisotropy over time were observed. In contrast, abnormally high rates of brain atrophy were seen in both the grey and white matter. The location and extent of diffuse axonal injury predicted the degree of brain atrophy: fractional anisotropy predicted progressive atrophy in both whole-brain and voxelwise analyses. The strongest relationships were seen in central white matter tracts, including the body of the corpus callosum, which are most commonly affected by diffuse axonal injury. Diffuse axonal injury predicted substantially more variability in white matter atrophy than other putative clinical or imaging measures, including baseline brain volume, age, clinical measures of injury severity and microbleeds (>50% for fractional anisotropy versus <5% for other measures). Grey matter atrophy was not predicted by diffuse axonal injury at baseline. In summary, diffusion MRI measures of diffuse axonal injury are a strong predictor of post-traumatic neurodegeneration. This supports a causal link between axonal injury and the progressive neurodegeneration that is commonly seen after moderate/severe traumatic brain injury but has been of uncertain aetiology. The assessment of diffuse axonal injury with diffusion MRI is likely to improve prognostic accuracy and help identify those at greatest neurodegenerative risk for inclusion in clinical treatment trials.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 886-887
Author(s):  
Andrei Irimia ◽  
Ammar Dharani ◽  
Van Ngo ◽  
David Robles ◽  
Kenneth Rostowsky

Abstract Mild traumatic brain injury (mTBI) affects white matter (WM) integrity and accelerates neurodegeneration. This study assesses the effects of age, sex, and cerebral microbleed (CMB) load as predictors of WM integrity in 70 subjects aged 18-77 imaged acutely and ~6 months after mTBI using diffusion tensor imaging (DTI). Two-tensor unscented Kalman tractography was used to segment and cluster 73 WM structures and to map changes in their mean fractional anisotropy (FA), a surrogate measure of WM integrity. Dimensionality reduction of mean FA feature vectors was implemented using principal component (PC) analysis, and two prominent PCs were used as responses in a multivariate analysis of covariance. Acutely and chronically, older age was significantly associated with lower FA (F2,65 = 8.7, p < .001, η2 = 0.2; F2,65 = 12.3, p < .001, η2 = 0.3, respectively), notably in the corpus callosum and in dorsolateral temporal structures, confirming older adults’ WM vulnerability to mTBI. Chronically, sex was associated with mean FA (F2,65 = 5.0, p = 0.01, η2 = 0.1), indicating males’ greater susceptibility to WM degradation. Acutely, a significant association was observed between CMB load and mean FA (F2,65 = 5.1, p = 0.009, η2 = 0.1), suggesting that CMBs reflect the acute severity of diffuse axonal injury. Together, these findings indicate that older age, male sex, and CMB load are risk factors for WM degeneration. Future research should examine how sex- and age-mediated WM degradation lead to cognitive decline and connectome degeneration after mTBI.


2016 ◽  
Vol 22 (2) ◽  
pp. 120-137 ◽  
Author(s):  
Jasmeet P. Hayes ◽  
Erin D. Bigler ◽  
Mieke Verfaellie

AbstractObjectives:Recent advances in neuroimaging methodologies sensitive to axonal injury have made it possible to assess in vivo the extent of traumatic brain injury (TBI) -related disruption in neural structures and their connections. The objective of this paper is to review studies examining connectivity in TBI with an emphasis on structural and functional MRI methods that have proven to be valuable in uncovering neural abnormalities associated with this condition.Methods:We review studies that have examined white matter integrity in TBI of varying etiology and levels of severity, and consider how findings at different times post-injury may inform underlying mechanisms of post-injury progression and recovery. Moreover, in light of recent advances in neuroimaging methods to study the functional connectivity among brain regions that form integrated networks, we review TBI studies that use resting-state functional connectivity MRI methodology to examine neural networks disrupted by putative axonal injury.Results:The findings suggest that TBI is associated with altered structural and functional connectivity, characterized by decreased integrity of white matter pathways and imbalance and inefficiency of functional networks. These structural and functional alterations are often associated with neurocognitive dysfunction and poor functional outcomes.Conclusions:TBI has a negative impact on distributed brain networks that lead to behavioral disturbance. (JINS, 2016,22, 120–137)


2010 ◽  
Vol 3 (2) ◽  
pp. 111
Author(s):  
Hyung Jong Choi ◽  
Jong-Gu Kang ◽  
Seung Ho Ahn ◽  
Suk Hoon Ohn ◽  
Kwang-Ik Jung ◽  
...  

2022 ◽  
Vol 11 (2) ◽  
pp. 358
Author(s):  
Francesco Latini ◽  
Markus Fahlström ◽  
Fredrik Vedung ◽  
Staffan Stensson ◽  
Elna-Marie Larsson ◽  
...  

Traumatic brain injury (TBI) or repeated sport-related concussions (rSRC) may lead to long-term memory impairment. Diffusion tensor imaging (DTI) is helpful to reveal global white matter damage but may underestimate focal abnormalities. We investigated the distribution of post-injury regional white matter changes after TBI and rSRC. Six patients with moderate/severe TBI, and 12 athletes with rSRC were included ≥6 months post-injury, and 10 (age-matched) healthy controls (HC) were analyzed. The Repeatable Battery for the Assessment of Neuropsychological Status was performed at the time of DTI. Major white matter pathways were tracked using q-space diffeomorphic reconstruction and analyzed for global and regional changes with a controlled false discovery rate. TBI patients displayed multiple classic white matter injuries compared with HC (p < 0.01). At the regional white matter analysis, the left frontal aslant tract, anterior thalamic radiation, and the genu of the corpus callosum displayed focal changes in both groups compared with HC but with different trends. Both TBI and rSRC displayed worse memory performance compared with HC (p < 0.05). While global analysis of DTI-based parameters did not reveal common abnormalities in TBI and rSRC, abnormalities to the fronto-thalamic network were observed in both groups using regional analysis of the white matter pathways. These results may be valuable to tailor individualized rehabilitative approaches for post-injury cognitive impairment in both TBI and rSRC patients.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S96-S96
Author(s):  
Andrei Irimia ◽  
Kenneth Rostowsky ◽  
Nikhil Chaudhari ◽  
Maria Calvillo ◽  
Sean Lee

Abstract Although mild traumatic brain injury (mTBI) and Alzheimer’s disease (AD) are associated with white matter (WM) degradation, the nature of these alterations and the outcomes of their comparison have not been elucidated. Diffusion tensor imaging (DTI) has been utilized in both conditions, and has uncovered decreases in the fractional anisotropy (FA) of the corpus callosum and cingulum bundle, compared to healthy control (HC) volunteers [1, 2]. Despite mTBI being a potential risk factor for AD, no systematic quantitative comparison has been drawn between their WM degradation patterns. Here we investigated WM FA differences using DTI and tract-based spatial statistics (TBSS) between age- and sex-matched adults: 33 chronic mTBI patients, 67 AD patients and 81 HC participants. T1-weighted magnetic resonance imaging (MRI) and DTI were acquired at 3T. mTBI patients were scanned acutely and ~6 months post-injury. FSL software was used for artefact correction, FA computation and TBSS implementation. Statistical comparison of WM FA patterns between mTBI and AD patients was achieved by two one-sided t tests (TOSTs) of statistical equivalence, with equivalence bounds defined where Cohen’s d &lt; 0.3. A significant difference was found between the FA means of mTBI vs. HC groups, and the AD vs. HC groups (p &lt; 0.01, corrected). Mean FA differences between mTBI and AD were statistically equivalent in the corpus callosum and in the inferior longitudinal fasciculus (p &lt; 0.05, corrected). Future research should focus on clarifying the similarities between mTBI and AD, potentially leading to novel hypotheses and improved AD diagnosis.


Brain ◽  
2020 ◽  
Author(s):  
Amy E Jolly ◽  
Maria Bălăeţ ◽  
Adriana Azor ◽  
Daniel Friedland ◽  
Stefano Sandrone ◽  
...  

Abstract Poor outcomes after traumatic brain injury (TBI) are common yet remain difficult to predict. Diffuse axonal injury is important for outcomes, but its assessment remains limited in the clinical setting. Currently, axonal injury is diagnosed based on clinical presentation, visible damage to the white matter or via surrogate markers of axonal injury such as microbleeds. These do not accurately quantify axonal injury leading to misdiagnosis in a proportion of patients. Diffusion tensor imaging provides a quantitative measure of axonal injury in vivo, with fractional anisotropy often used as a proxy for white matter damage. Diffusion imaging has been widely used in TBI but is not routinely applied clinically. This is in part because robust analysis methods to diagnose axonal injury at the individual level have not yet been developed. Here, we present a pipeline for diffusion imaging analysis designed to accurately assess the presence of axonal injury in large white matter tracts in individuals. Average fractional anisotropy is calculated from tracts selected on the basis of high test-retest reliability, good anatomical coverage and their association to cognitive and clinical impairments after TBI. We test our pipeline for common methodological issues such as the impact of varying control sample sizes, focal lesions and age-related changes to demonstrate high specificity, sensitivity and test-retest reliability. We assess 92 patients with moderate-severe TBI in the chronic phase (≥6 months post-injury), 25 patients in the subacute phase (10 days to 6 weeks post-injury) with 6-month follow-up and a large control cohort (n = 103). Evidence of axonal injury is identified in 52% of chronic and 28% of subacute patients. Those classified with axonal injury had significantly poorer cognitive and functional outcomes than those without, a difference not seen for focal lesions or microbleeds. Almost a third of patients with unremarkable standard MRIs had evidence of axonal injury, whilst 40% of patients with visible microbleeds had no diffusion evidence of axonal injury. More diffusion abnormality was seen with greater time since injury, across individuals at various chronic injury times and within individuals between subacute and 6-month scans. We provide evidence that this pipeline can be used to diagnose axonal injury in individual patients at subacute and chronic time points, and that diffusion MRI provides a sensitive and complementary measure when compared to susceptibility weighted imaging, which measures diffuse vascular injury. Guidelines for the implementation of this pipeline in a clinical setting are discussed.


Sign in / Sign up

Export Citation Format

Share Document