Metrology and numerical characterization of random rough surfaces—Data reduction via an effective filtering solution

Author(s):  
Itzhak Green

Random rough surfaces appear in measurements as noisy signals varying spatially. Mathematically, there is no theoretical difference between such and time-varying signals. Hence, the extensive array of methods and analysis tools that have been developed for signal processing are available also for rough surfaces characterization. In both, the objective is to reduce the vast amount of data to just a few meaningful parameters that allow the application of other physical concepts. Particularly in contact mechanics, it is well known that the Greenwood–Williamson model requires three parameters for the calculation of the elastic deformation of rough surface asperities. The parameters are the roughness standard deviation, the equivalent asperity radius, and the asperity density. These parameters are byproducts of the spectral moments. The spectral moments have been employed for decades in many fields of engineering and science. For rough surfaces, for example, the work by McCool outlines a mathematical blueprint procedure on how to straightforwardly reduce the entire roughness data into the said three spectral moments. It is commonly claimed, however, that the said procedure inherently suffers from resolution problems, that is, a given surface shall have much different spectral moments depending on the sampling rate (or spacing). To study these issues, synthetic surfaces are generated herein using a harmonic waveform precisely as McCool had done. However, here the signals are contaminated by a white noise process with various magnitudes. A signal-to-noise ratio is defined and used to assess the quality of the signal, and the spectral moments are evaluated for various magnitudes of the noise. Since closed-from solutions are available for the spectral moments of the uncontaminated signal, the contaminated signals are evaluated vis-à-vis the exact anticipated values, and the errors are calculated. It is shown that using the common techniques (such as those outlined by McCool) can lead to enormous and unacceptable errors. Resolution is studied as well; it is shown to have an effect only in the presence of noise, but by itself it has no independent influence on the spectral moments. The venerable Savitzky–Golay smoothing filter is used on the noisy signals, showing some improvements, but the resulting spectral moments predicted still contain objectionable errors. A generalized exponential smoothing filter, G-EXP, is constructed, and it is shown to markedly moderate the errors and reduce them to acceptable levels, while effectively restoring the underlying surface physical characteristics. Moreover, the filtered signals do not suffer from resolution problems, where results, in fact, improve with higher (i.e., finer) resolutions. Fractal-generated signals are likewise discussed.

2012 ◽  
Vol 29 (6) ◽  
pp. 772-795 ◽  
Author(s):  
Lei Lei ◽  
Guifu Zhang ◽  
Richard J. Doviak ◽  
Robert Palmer ◽  
Boon Leng Cheong ◽  
...  

Abstract The quality of polarimetric radar data degrades as the signal-to-noise ratio (SNR) decreases. This substantially limits the usage of collected polarimetric radar data to high SNR regions. To improve data quality at low SNRs, multilag correlation estimators are introduced. The performance of the multilag estimators for spectral moments and polarimetric parameters is examined through a theoretical analysis and by the use of simulated data. The biases and standard deviations of the estimates are calculated and compared with those estimates obtained using the conventional method.


2007 ◽  
Vol 48 (6) ◽  
pp. 678-686 ◽  
Author(s):  
J. O. Heidenreich ◽  
A. M. Schilling ◽  
F. Unterharnscheidt ◽  
R. Stendel ◽  
S. Hartlieb ◽  
...  

Background: The characterization of brain arteriovenous malformation (AVM) angioarchitecture remains rewarding in planning and predicting therapy. The increased signal-to-noise ratio at higher field strength has been found advantageous in vascular brain pathologies. Purpose: To evaluate whether 3.0T time-of-flight (TOF) magnetic resonance angiography (MRA) is superior to 1.5T TOF-MRA for the characterization of cerebral AVMs. Material and Methods: Fifteen patients with AVM underwent TOF-MRA at 3.0T and 1.5T and catheter angiography (DSA), which was used as the gold standard. Blinded readers scored image quality on a four-point scale, nidus size, and number of feeding arteries and draining veins. Results: Image quality of TOF-MRA at 3.0T was superior to 1.5T but still inferior to DSA. Evaluation of nidus size was equally good at 3.0T and 1.5T for all AVMs. In small AVMs, however, there was a tendency of size overestimation at 3.0T. MRA at 3.0T had increased detection rates for feeding arteries (+21%) and superficial (+13%) and deep draining veins (+33%) over 1.5T MRA. Conclusion: 3.0T TOF-MRA offers superior characterization of AVM angioarchitecture compared with 1.5T TOF-MRA. The image quality of MRA at both 3.0 and 1.5T is still far from equal to DSA, which remains the gold standard for characterization of AVM.


2018 ◽  
Vol 8 (1) ◽  
pp. 23-29
Author(s):  
Firman Ridwan ◽  
Roni Novison

This study was aimed to improve the quality of aroma of roasted coffee by using Taguchi's design as experimental technique. The roaster parameters evaluated were temperature, incubation time, moisture content and cylinder rotational speed. An orthogonal array L9, signal to noise ratio and ANOVA were employed to investigate the influence of the roaster parameters. The results showed that the optimal roasted coffee aroma was produced at a temperature of 170◦C, incubation time of 14 minutes, moisture content of 6% (v/w) and cylinder rotational speed of 50 rpm. The most to less significant roasting parameters as observed in this study were as follows: temperature, incubation time, moisture content and cylinder rotational speed. Furthermore, the results showed that the Taguchi design was better than the full experimental design in solving experiments with a minimum number. Keywords: ANOVA, Coffee roaster, Roasted coffee aroma, Signal to noise ratio, Taguchi technique


1985 ◽  
Vol 54 ◽  
Author(s):  
J. R. Blanco ◽  
K. Vedam ◽  
P. J. McMarr ◽  
J. M. Bennett

ABSTRACTWell characterized rough surfaces of aluminum films have been studied by the nondestructive technique of Spectroscopie Ellipsometry (SE). The roughness of the aluminum specimens had been characterized earlier by Total Integrated Scattering and Stylus Profilometry techniques to obtain numerical estimates of ras roughness and autocovariance lengths. The present SE measurements on these specimens were carried out at a number of angles of incidence in the range 30–80° and at a number of discrete wavelengths in the spectral range 300–650nm. The SE results were then analyzed by the scalar theory of diffraction from random rough surfaces by treating the surface as a simple random rough surface. The results of such analyses of the SE measurements are compared with the results of the earlier characterization techniques.


1985 ◽  
Author(s):  
D. Maystre ◽  
A. Roger ◽  
J. P. Rossi ◽  
O. Mata Mendez

1998 ◽  
Vol 84 (5) ◽  
pp. 2571-2582 ◽  
Author(s):  
Y.-P. Zhao ◽  
Irene Wu ◽  
C.-F. Cheng ◽  
Ueyn Block ◽  
G.-C. Wang ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-22 ◽  
Author(s):  
Hee Jung Shin ◽  
Ram M. Narayanan ◽  
Muralidhar Rangaswamy

Ultrawideband (UWB) waveforms achieve excellent spatial resolution for better characterization of targets in tomographic imaging applications compared to narrowband waveforms. In this paper, two-dimensional tomographic images of multiple scattering objects are successfully obtained using the diffraction tomography approach by transmitting multiple independent and identically distributed (iid) UWB random noise waveforms. The feasibility of using a random noise waveform for tomography is investigated by formulating a white Gaussian noise (WGN) model using spectral estimation. The analytical formulation of object image formation using random noise waveforms is established based on the backward scattering, and several numerical diffraction tomography simulations are performed in the spatial frequency domain to validate the analytical results by reconstructing the tomographic images of scattering objects. The final image of the object based on multiple transmitted noise waveforms is reconstructed by averaging individually formed images which compares very well with the image created using the traditional Gaussian pulse. Pixel difference-based measure is used to analyze and estimate the image quality of the final reconstructed tomographic image under various signal-to-noise ratio (SNR) conditions. Also, preliminary experiment setup and measurement results are presented to assess the validation of simulation results.


2001 ◽  
Vol 48 (9) ◽  
pp. 1447-1453 ◽  
Author(s):  
Ilkka Kallioniemi ◽  
Ari Niinistö ◽  
Jyrki Saarinen ◽  
Ari T. Friberg

Sign in / Sign up

Export Citation Format

Share Document