scholarly journals The infrastructural power of the military: The geoeconomic role of the US Army Corps of Engineers in the Arabian Peninsula

2017 ◽  
Vol 24 (4) ◽  
pp. 911-933 ◽  
Author(s):  
Laleh Khalili

In analysing the role of the US in the global expansion of capitalist relations, most critical accounts see the US military’s invasion and conquest of various states as paving the way for the arrival of US businesses and capitalist relations. However, beyond this somewhat simplified image, and even in peacetime, the US military has been a major geoeconomic actor that has wielded its infrastructural power via its US Army Corps of Engineers’ overseas activities. The transformation of global economies in the 20th century has depended on the capitalisation of the newly independent states and the consolidation of liberal capitalist relations in the subsequent decades. The US Army Corps of Engineers has not only extended lucrative contracts to private firms (based not only in the US and host country, but also in geopolitically allied states), but also, and perhaps most important, has itself established a grammar of capitalist relations. It has done so by forging both physical infrastructures (roads, ports, utilities and telecommunications infrastructures) and virtual capitalist infrastructures through its practices of contracting, purchasing, design, accounting, regulatory processes and specific regimes of labour and private property ownership.

1964 ◽  
Vol 1 (4) ◽  
pp. 215-226 ◽  
Author(s):  
W G Brown

Calculations using the Neumann solution (as modified by Aldrich) and thermal properties of soils (obtained by Kersten) show that the frost penetration depth for the same freezing index for essentially all soils with any moisture content and for dry sand and rock varies by a factor of about 2 to 1. The extremes calculated in this way bracket the experimentally determined design curve of the US Army Corps of Engineers and give it theoretical support. The theoretical calculations and additional experimental data are used as a basis for a small alteration in the slope of the design curve. This modified design curve is recommended for field use because of (1) inherent imperfections in existing theory and (2) practical limitations to precise specification of field conditions.


2015 ◽  
Vol 35 (2) ◽  
pp. 196-208 ◽  
Author(s):  
Julie Dean Rosati ◽  
Katherine Flynn Touzinsky ◽  
W. Jeff Lillycrop

2017 ◽  
Vol 8 (1) ◽  
pp. 125-151 ◽  
Author(s):  
Eric M Gagnet ◽  
John M Hoemann ◽  
James S Davidson

Over recent decades, three distinct methods have evolved that are currently being used to generate resistance functions for single-degree-of-freedom analyses of unreinforced masonry walls subjected to blast loading. The degree of differences in these resistance definitions depends on whether the wall is assumed to be simply supported or whether compression arching forces result from rotation restraint at the supports. The first method originated in the late 1960s as a result of both experimental and analytical research sponsored by the US Department of Defense. That method, referred to as the Wiehle method, is the basis of Unified Facilities Criteria 3-340-02 and other derived analytical software such as the Wall Analysis Code developed by the US Army Corps of Engineers, Engineer Research and Development Center. The second method is based on elastic mechanics and an assumed linear decay function that follows and is the basis of the widely used Single-Degree-of-Freedom Blast Effects Design Spreadsheets software distributed by the US Army Corps of Engineers, Protective Design Center. The third method is largely based on concrete and masonry behavioral theories developed by Paulay and Priestly in the early 1990s. This article systematically compares the resistance methodologies for arching and non-arching scenarios, demonstrates the implications by plugging the disparate resistance functions into blast load single-degree-of-freedom models, compares the analytical results to full-scale blast test results, and offers conclusions about the accuracy and efficacies of each method.


2021 ◽  
Author(s):  
Jennifer McAlpin ◽  
Jason Lavecchia

The Brunswick area consists of many acres of estuarine and marsh environments. The US Army Corps of Engineers District, Savannah, requested that the US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, develop a validated Adaptive Hydraulics model and assist in using it to perform hydrodynamic modeling of proposed navigation channel modifications. The modeling results are necessary to provide data for ship simulation. The model setup and validation are presented here.


Sign in / Sign up

Export Citation Format

Share Document