Evaluation and prediction of carbon fiber–reinforced polymer cable anchorage for large capacity

2019 ◽  
Vol 22 (8) ◽  
pp. 1952-1964 ◽  
Author(s):  
Bo Feng ◽  
Xin Wang ◽  
Zhishen Wu

Aiming to address the problems of stress concentration on conical wedge anchorage, a fiber-reinforced polymer cable anchorage with segmental variable stiffness of the load transfer medium was proposed. The key parameters that affect the anchorage behavior were investigated. The mechanical properties of the carbon fiber–reinforced polymer tendon and load transfer medium were tested. The failure mode, anchoring efficiency, stress, and displacement in the anchor zone were studied. The parameter optimization was performed using an experimentally verified finite element simulation. The parameters of the anchorage system with large capacity were evaluated. The results demonstrate that the compressive strength of the load transfer medium is the designed stress limit for the anchorage system. The cable does not slip or become damaged in the anchor zone, and the anchoring efficiency reaches 91%. The distribution of the shear and radial stress on the cable surface is smooth, and the stress concentration is greatly relieved. The result of the finite element simulation is consistent with the experimental values when the friction coefficient is 0.15, and the material and geometric parameters of the anchorage system with cable forces of 5000, 10,000, 15,000, and 20,000 kN are suggested. The geometric parameters of the anchor system with diverse cable capacity can be preliminarily designed based on the fitting equations.

2021 ◽  
Author(s):  
Mukai Zhou ◽  
Jiang Xu ◽  
Zhilin Lv ◽  
Xuhong Qiang

<p>The U-rib butt weld fatigue crack is a typical crack form in orthotropic steel bridge decks. However, there is no completely mature rehabilitation method so far. In this paper, the carbon fiber reinforced polymer (CFRP) strip is used to reduce the stress concentration at the crack tip. Finite element model of U-rib segment was established and parameter analysis was conducted to investigate the influence of the CFRP strip design parameters on the rehabilitation effect. The results indicate that the influence of the three parameters on the reduction of stress concentration is: CFRP layer number &gt; paste width &gt; paste area. Specifically, it is recommended that number of CFRP layers does not exceed 3. For paste width and area, it is only required that the CFRP strip can cover the cracked area.</p>


2018 ◽  
Vol 52 (23) ◽  
pp. 3265-3273 ◽  
Author(s):  
Xin-Tao Wang ◽  
Yun-Long Chen ◽  
Li Ma

In recent years, three-dimensional auxetic structures have attracted great interest. Generally, three-dimensional auxetic structures are of complicate geometries which make them difficult to fabricate, benefiting from the development of additive manufacturing technologies, many three-dimensional auxetic structures can be made from metals or polymers. However, to the authors' knowledge, the additive manufacturing technology of fiber reinforced polymer is not fully developed, and none three-dimensional auxetic structure made from fiber reinforced polymer has been reported before. To integrate the high specific stiffness, high specific strength, and light weight merits of high-performance fiber reinforced polymer composites into three-dimensional auxetic structures with unique properties, research on composite three-dimensional auxetic structures made from fiber reinforced polymer should be conducted. This paper presents the composite three-dimensional re-entrant auxetic structures made from carbon fiber reinforced polymer laminates using an interlocking assembly method. The auxetic nature of the composite structure has been verified by experimental testing and finite element simulations. Based on the finite element models, the dependences of the Poisson's ratio and effective compression modulus of the composite auxetic three-dimensional re-entrant structure on the re-entrant angle have been studied and compared to metal three-dimensional re-entrant structure. A comparative study of the Poisson's ratio and specific stiffness of carbon fiber reinforced polymer composite auxetic structure with the three-dimensional printed polymer and metal auxetic structures in literature has also been conducted.


Sign in / Sign up

Export Citation Format

Share Document