Effects of temperature and lead core heating on response of seismically isolated bridges under near-fault excitations

2019 ◽  
Vol 22 (14) ◽  
pp. 2966-2981 ◽  
Author(s):  
Hao Wang ◽  
Wen-Zhi Zheng ◽  
Jian Li ◽  
Yu-Qi Gao

Seismic responses of bridges isolated by lead rubber bearings under near-fault excitations are presented in this article. A bilinear force-deformation model is employed to represent the hysteretic behaviors of lead rubber bearings. The joint effects of ambient temperature, initial displacement, and lead core heating on the responses of seismically isolated bridges are investigated. Nonlinear time history analyses are conducted with the employed hysteretic models of lead rubber bearings. Comparisons of the responses with and without the joint effects are performed, in terms of maximum isolator displacements, maximum isolator forces, and base forces of the piers. Results show that ambient temperature, initial displacement, and lead core heating have significant joint effects on the responses of seismically isolated bridges. When such joint effects are ignored at low temperatures, the maximum isolator displacements could be overestimated, whereas the maximum isolator forces and the base forces could be underestimated. However, as for ambient temperatures above 20°C, the maximum isolator displacements could be underestimated, whereas the maximum isolator forces and the base forces could be overestimated with small maximum isolator displacements and underestimated with large maximum isolator displacements.

2017 ◽  
Vol 29 (5) ◽  
pp. 703-728 ◽  
Author(s):  
Shuai Li ◽  
Farshad Hedayati Dezfuli ◽  
Jing-quan Wang ◽  
M Shahria Alam

This article investigates the efficiency of a new generation smart isolation system, namely shape memory alloy wire-based lead rubber bearing, for the seismic response control of long-span cable-stayed bridge systems under near-fault ground motions. The constitutive model of shape memory alloy wire-based lead rubber bearings is coded and implemented into OpenSees as a new user element. This user element can accurately predict the re-centering capability and energy dissipation capacity of shape memory alloy wire-based lead rubber bearing under different excitations. The Sutong cable-stayed bridge in China, with a main span of 1088 m, is taken as an example. Results reveal that implementing shape memory alloy wires into lead rubber bearings can effectively increase the self-centering property and, as a result, reduce the residual deformation in shape memory alloy wire-based lead rubber bearings under near-fault ground motions. Shape memory alloy wires lead to an increase in the horizontal stiffness and energy dissipation capacity of shape memory alloy wire-based lead rubber bearings. The deck displacement is restricted effectively, and a superior structural performance is achieved in terms of the deck acceleration. Shape memory alloy wire-based lead rubber bearings can effectively reduce the base shear and base moment of the towers. However, it is observed that an increase in the shape memory alloy wire diameter may have negligible effect on the deck acceleration, tower base shear and moment, and in some cases, on the pier base shear and moment.


2019 ◽  
Vol 39 (1) ◽  
pp. 98-113 ◽  
Author(s):  
Qiang Rong

Seismic response of five-story frame structure supported by lead-rubber bearings isolation system is investigated subjected to near-fault ground motions. The main structure is modeled as a simple linear multi-degrees-of-freedom vibration system with lumped masses, excited by near-fault ground motions in the horizontal direction. The variation curves of peak top floor acceleration and peak bearing displacement of isolated building are plotted under different yield shear coefficient. The objective function selected for optimality is to maximize the seismic energy dissipated by the lead-rubber bearings. The main constraint conditions selected for optimality are the minimization of both peak bearing displacement and peak top floor acceleration. Optimum parameters of lead-rubber bearing isolation system are investigated and found that optimum yield shear coefficient of lead-rubber bearings is found to be in the range of 0.10–0.14 under near-fault ground motions. Optimum yield shear coefficient decreases with the increase of second isolation period. Optimum yield shear coefficient of lead-rubber bearings with higher yield displacement is larger than that of lead-rubber bearings with low yield displacement. Optimum ratio of pre-yield stiffness to post-yield stiffness of lead-rubber bearings is found to be in the range of 16–35. Optimum stiffness ratio increases proportionally with the decrease of yield displacement. Optimum stiffness ratio increases slightly with the increase of yield shear coefficient. Excluding the effect of pre-yield stiffness, the optimum second isolation period is recommended to be in the range of 4–6 s.


2020 ◽  
Vol 20 (02) ◽  
pp. 2050023 ◽  
Author(s):  
Wenzhi Zheng ◽  
Hao Wang ◽  
Hong Hao ◽  
Kaiming Bi ◽  
Huijun Shen

This paper investigates the seismic performance of bridges installed with a sliding-lead rubber bearing (LRB) isolation system subjected to near-fault earthquakes. A three-span continuous bridge isolated with sliding-LRB system is used as an example. Nonlinear time history analyses are conducted to investigate the sensitivity effects of isolation period, friction coefficient and sliding displacement limit on the bridge responses. The responses of the sliding-LRB system are compared with those of the conventional LRB system. The results show that the base forces of the piers can be reduced by employing proper friction coefficients. However, the residual displacement of the sliding-LRB system may be larger compared with that of the conventional LRB system. To overcome this disadvantage, an improved solution to reduce the residual displacement is proposed with its effectiveness investigated. It was also demonstrated that the residual displacement and peak displacement can be effectively reduced by employing the shape memory alloy devices in the sliding-LRB system without significantly increasing the base forces.


Sign in / Sign up

Export Citation Format

Share Document