Numerical simulation of the effects of canopy properties on airflow and pollutant dispersion in street canyons

2021 ◽  
pp. 1420326X2110051
Author(s):  
Le Wang ◽  
Wen-Xin Tian ◽  
Xiu-Yong Zhao ◽  
Chuan-Qing Huang

The air flow and pollutant concentration fields in a street canyon affected by trees could affect the comfort and health of residents. At present, the description of the non-uniform/discontinuous distribution of leaves is difficult. In this study, the leaf distribution in the canopy was characterized by establishing non-continuous (uniform/random) algorithm based on a numerical simulation method, and the effects of canopy properties including, height, porosity and uniform/random leaf distribution, on the airflow and pollutant concentration fields in urban street canyons were investigated. The position of the tree canopy was found to directly affect the airflow field form and the air velocity distribution in the street canyon at low inflows. The average air velocity in the street canyon could be reduced significantly when the top of the tree canopy is near the top of the street canyon. The air velocity and pollutant concentration in the street canyon would vary only slightly due to the canopy porosity. Due to the increasing canopy porosity, the air velocity would increase, and the pollutant concentration would be reduced. The leaves are non-continuous and uniformly distributed at constant porosity, which does not significantly change the velocity distribution and pollutant concentration in the street canyon.

2012 ◽  
Vol 178-181 ◽  
pp. 429-432
Author(s):  
Y. L. Liu ◽  
B. Lv ◽  
W.L. Wei

In this paper, the flow structure of the oxidation ditch was studied using numerical simulation method and different submerged depth of aeration impellers. The computed velocity fields were analyzed, which shows that under the same conditions, and by using the optimal submerged depth the average velocity of the flow in oxidation ditch is increased and the velocity near-bottom has increased significantly. The results of comparisons show that the velocity distribution is more uniform along the depth direction, and that the flow velocity distribution structure can prevent sludge from settling in the oxidation ditch processing system at the submergence ratio called the optimal submergence ratio, which helps to improve the efficiency of oxidation ditch sewage treatment system.


2011 ◽  
Vol 356-360 ◽  
pp. 766-770
Author(s):  
Yuan Dong Huang ◽  
Yue Jiao Peng ◽  
Jian Wei Jiang ◽  
Zhong Hua Zhou ◽  
Jing Gu

CFD calculations are carried out using the standard, RNG and realizable κ-ε turbulence models to simulate the airflow and pollutant dispersion inside an isolated street canyon. The computed air velocity vector fields and pollutant concentration contours show that all the three studied κ-ε models produce a very similar clockwise vortex structure that carries the pollutants released from the line source on the street floor towards the leeward side of the canyon. The calculated non-dimensional pollutant concentration distributions on both the leeward and windward walls of the canyon are compared with the wind tunnel measured data. It is revealed that (1) on the windward wall of the canyon, the calculated pollutant concentrations using the standard, RNG and realizable κ-ε models are all in perfect agreement with the experimental observations, (2) the RNG and realizable κ-ε models provide almost the same results for pollutant concentration distributions on the leeward wall of the canyon, (3) the RNG and realizable κ-ε models overestimate greatly the pollutant concentration values on the leeward wall of the canyon, whereas the concentration distributions predicted by the standard κ-ε model on the leeward wall are in reasonable agreement with the wind tunnel data.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3397 ◽  
Author(s):  
Lan Xiong ◽  
Yonghui Chen ◽  
Yang Jiao ◽  
Jie Wang ◽  
Xiao Hu

The reliability and service life of power cables is closely related to the cable ampacity and temperature rise. Therefore, studying the temperature field distribution and the cable ampacity is helpful to improve the construction guidelines of cable manufacturers. Taking a 8.7/15 kV YJV 1 × 400 XLPE three-loop power cable as the research object, cable temperature is calculated by IEC-60287 thermal circuit method and numerical simulation method, respectively. The results show that the numerical simulation method is more in line with the actual measured temperature, and the relative error is only 0.32% compared with the actual measured temperature. The temperature field and air velocity field of cluster cables with different laying methods are analyzed by finite element method. The corresponding cable ampacity are calculated by secant method. The results show that when the cable is laid at the bottom of the cable trench, the cable current is 420 A, which is 87.5% of the regular laying. Under irregular laying mode, the temperature of cable is higher than that of regular laying mode and the cable ampacity is lower than that of regular laying mode. At the same time, a multiparameter online monitoring system is developed to online monitor the temperature, water level and smoke concentration of the cable.


2014 ◽  
Vol 38 (24) ◽  
pp. 5883-5909 ◽  
Author(s):  
D.M.S. Madalozzo ◽  
A.L. Braun ◽  
A.M. Awruch ◽  
I.B. Morsch

Sign in / Sign up

Export Citation Format

Share Document