Response analysis of the nonlinear vibration energy harvester with an uncertain parameter

Author(s):  
Dongmei Huang ◽  
Shengxi Zhou ◽  
Qun Han ◽  
Grzegorz Litak

In this paper, the Chebyshev polynomial approximation is firstly utilized to analyze the dynamical characteristics of the nonlinear vibration energy harvester with an uncertain parameter. First, the stochastic energy harvester is transformed into a high-dimensional equivalent deterministic system by the Chebyshev polynomial approximation. And the ensemble mean response of the stochastic energy harvester is introduced to discuss the stochastic response. Then, the effectiveness of the approximation method is verified by numerical results. Furthermore, the bifurcation property of the displacement and voltage is analyzed, which is also consistent with the results derived by the top Lyapunov exponent. It is found that random factor can induce the appearance of multi-periodic phenomena and lead to appear the behavior of the periodic bifurcation. The strong random factor induces the fluctuation of the output voltage. In addition, the existence of the random factor greatly influences the property of the sub-harmonics and super-harmonics of the spectrum. Overall, the response mechanism of the nonlinear vibration energy harvester with an uncertain parameter is revealed.

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Pranay Podder ◽  
Dhiman Mallick ◽  
Andreas Amann ◽  
Saibal Roy

2020 ◽  
Vol 2 (2) ◽  
pp. 24

Vibration energy harvester has been paid a lot of attention by many researchers to transforming ambient vibration into electrical energy, which is normally utilized to develop wireless electronic sectors. The paper presents a finite element model (FEM) of a vibration energy harvester consisting of a bimorph electromechanical system (MEMS) generator. The model is used to simulate, and compare, the mechanical characteristics and electrical response of piezoelectric material results between the cantilever beam structure formed by laminating two piezoelectric layers on both sides of a Carbon fiber reinforced polymer (CFRP) substrate and Ti-6Al-4V substrate using ANSYS®19 R1. A set of numerical simulations has been carried out, and the results show that the comparisons of the harmonic response analysis seen change between the different substrates based on the bimorph piezoelectric MEMS generator.


Sign in / Sign up

Export Citation Format

Share Document