A wind-induced negative damping method to achieve high-energy orbit of a nonlinear vibration energy harvester

Author(s):  
Chunbo Lan ◽  
Guobiao Hu ◽  
Weiyang Qin ◽  
Yabin Liao
2021 ◽  
pp. 1-31
Author(s):  
Xiang Zhao ◽  
Weidong Zhu ◽  
Ying-hui Li

Abstract Vibration energy harvesting problems have strongly developed in recent years. However, many researchers just consider bending vibration models of energy harvesters. As a matter of fact, torsional vibration is also important and cannot be ignored in many cases. In this work, closed-form solutions of bending-torsion coupled forced vibrations of a piezoelectric energy harvester subjected to a fluid vortex are derived. Timoshenko beam model is used for modeling the energy harvester, and the extended Hamilton's principle is used in the modeling process. Since piezoelectric effects in both bending and torsional directions are considered, two kinds of electric coupling effects appear in forced vibration equations, and a new model for the electric circuit equation is developed. Lamb-Oseen vortex model is considered in this study. Both the external aerodynamic force and moment are simple harmonic loads. Three damping coefficients are considered in the present model. Based on Green's function method, closed-form solutions of the piezoelectric energy harvester subjected to the water vortex are derived. Some published results are used to verify the present solutions. It can be concluded through analysis that when torsional vibration is considered, the bandwidth of the high energy area of the voltage becomes large, and the bending-torsion coupled vibration energy harvester can produce more power than a transverse vibration energy harvester.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Pranay Podder ◽  
Dhiman Mallick ◽  
Andreas Amann ◽  
Saibal Roy

Sign in / Sign up

Export Citation Format

Share Document