A novel nonlinear controller for enhancement of the transient dynamics performance of a three-wheeled vehicle during different conditions

Author(s):  
Mohammad Amin Saeedi

In this study, a new controller to prevent the yaw instability and rollover of a three-wheeled vehicle has been proposed. This controller offers the most obvious opportunity for affecting the vehicle's lateral dynamics performance on the full range of nonlinearities during various operating boundaries. The active combined controller has been designed based on sliding mode control method using an active roll system and an active braking system to dominate the uncertainties of the nonlinear dynamic model. Firstly, to avoid rollover of the three-wheeled vehicle, the roll angle was considered as the control objective, and the anti-roll bar was employed as an actuator to produce the roll moment. Secondly, to increase the maneuverability and lateral dynamics enhancement, an active braking system was designed. In the control system, the yaw rate and the lateral velocity were regarded as the control variables to track their references. Moreover, to verify the performance of the mentioned combined controller, another control system has been designed using the linearization feedback control method. Then, computer simulation has been carried out with a 12 degrees of freedom dynamic model of the three-wheeled vehicle called the delta. Furthermore, a nonlinear tire model has been utilized to compute the longitudinal and the lateral forces. Next, the comparative simulation results confirmed the effectiveness of the robust control system to raise the vehicle's maneuverability and its rollover stability in comparison with the linearization feedback control method, especially when the three-wheeled vehicle is subjected to critical conditions.

2015 ◽  
Vol 764-765 ◽  
pp. 587-591 ◽  
Author(s):  
Chih Chin Wen ◽  
Shi Wei Lin

This paper introduces an alignment method using machine vision feedback control method. A panel is placed on a XXY table and its posture is inspected by image sensors with a frame grabber. The alignment of the panel is corrected by adjusting its positions until the amount of misalignment converges into a small tolerance error. Two-phase control process is also derived with this image acquisition design. Applying this proposed control method, long distance moving requirement and better alignment precision performance request can be also guaranteed. Experimental results are shown to demonstrate the feasibility of this alignment control system.


2013 ◽  
Vol 846-847 ◽  
pp. 313-316 ◽  
Author(s):  
Xiao Yun Zhang

This paper presented a new method based on the Fuzzy self - adaptive PID for BLDCM. This method overcomes some defects of the traditional PID control. Such as lower control precision and worse anti - jamming performance. It dynamic model of BLDCM was built, and then design method for TS fuzzy PID model is given, At last, it compared simulation results of PID control method with TS Fuzzy PID control method. The results show that the TS Fuzzy PID control method has more excellent dynamic antistatic performances, as well as anti-jamming performance. The experiment shows that TS fuzzy PID control has the stronger adaptability robustness and transplant.


Lab on a Chip ◽  
2018 ◽  
Vol 18 (14) ◽  
pp. 2099-2110 ◽  
Author(s):  
Yu Gao ◽  
Richard Lakerveld

A novel feedback control method to align colloidal particles reliably via directed self-assembly in a microfluidic device is presented.


Sign in / Sign up

Export Citation Format

Share Document