scholarly journals Three-point MEMS heat flux sensor for turbulent heat transfer measurement in internal combustion engines

2018 ◽  
Vol 20 (7) ◽  
pp. 696-705 ◽  
Author(s):  
Kazuhito Dejima ◽  
Osamu Nakabeppu ◽  
Yuto Nakamura ◽  
Tomohiro Tsuchiya ◽  
Keisuke Nagasaka

A heat flux sensor was developed with micro-electro-mechanical systems (MEMS) technologies for investigating turbulent heat transfer characteristics in engines. The sensor has three thin-film resistance temperature detectors (RTDs) of a square 315 µm on a side on a 900 µm diameter circle in rotational symmetry. The performances of the MEMS systems sensor were tested in an open combustion chamber and a laboratory engine. In the open chamber tests, it was revealed that the MEMS sensor can measure the wall heat fluxes reflecting flow states of gas phase. In addition, the noise was evaluated as 3.8 kW/m2 with the standard deviation against the wall heat flux of a few hundred kW/m2. From these results, it was proved that the MEMS sensor has the potential to observe turbulent heat transfer on the order over 10 kW/m2 in the engine. In the laboratory engine test, the wall heat flux for continuous 200 cycles was measured with a good signal-to-noise ratio. The noise was evaluated as 13.4 kW/m2 with the standard deviation despite the noisy environment. Furthermore, it was proved that the MEMS sensor has the comparable scale with the turbulence in the engine because the three adjacent detectors measured similar but different phase oscillations in the local instantaneous heat fluxes. In addition, a heat flux vector reflecting the state of the local instantaneous heat transfer was visualized by the adjacent three-point measurement. It is expected that the three-point MEMS sensor will be a useful tool for the engine heat transfer research.

2006 ◽  
Vol 129 (4) ◽  
pp. 425-433 ◽  
Author(s):  
B. A. Younis ◽  
B. Weigand ◽  
S. Spring

Fourier’s law, which forms the basis of most engineering prediction methods for the turbulent heat fluxes, is known to fail badly in capturing the effects of streamline curvature on the rate of heat transfer in turbulent shear flows. In this paper, an alternative model, which is both algebraic and explicit in the turbulent heat fluxes and which has been formulated from tensor-representation theory, is presented, and its applicability is extended by incorporating the effects of a wall on the turbulent heat transfer processes in its vicinity. The model’s equations for flows with curvature in the plane of the mean shear are derived and calculations are performed for a heated turbulent boundary layer, which develops over a flat plate before encountering a short region of high convex curvature. The results show that the new model accurately predicts the significant reduction in the wall heat transfer rates wrought by the stabilizing-curvature effects, in sharp contrast to the conventional model predictions, which are shown to seriously underestimate the same effects. Comparisons are also made with results from a complete heat-flux transport model, which involves the solution of differential transport equations for each component of the heat-flux tensor. Downstream of the bend, where the perturbed boundary layer recovers on a flat wall, the comparisons show that the algebraic model yields indistinguishable predictions from those obtained with the differential model in regions where the mean-strain field is in rapid evolution and the turbulence processes are far removed from local equilibrium.


1988 ◽  
Vol 110 (1) ◽  
pp. 57-65 ◽  
Author(s):  
J. Stoll ◽  
J. Straub

In this paper experimental and theoretical investigations on heat transfer and cooling film stability in a convergent–divergent nozzle are presented. Compressed air is injected into hot air in the inlet region of the nozzle and the influence of the strong favorable pressure gradient in the nozzle on turbulent heat transfer and mixing is examined. The experiments cover measurements of wall pressures, wall temperature, and wall heat flux. Calculations with parabolic finite difference boundary layer code have been performed using a well-known k–ε-turbulence model with an extension paying regard to acceleration. As a result the calculated wall heat flux is compared with the measured heat flux.


Author(s):  
A. M. Nasibulov ◽  
B. V. Perepelitsa ◽  
Yu. M. Pshenichnikov ◽  
N. S. Safarova ◽  
E. M. Khabakhpasheva

2012 ◽  
Vol 134 (7) ◽  
Author(s):  
B. A. Younis ◽  
B. Weigand ◽  
A. Laqua

This paper reports on the prediction of heat transfer in a fully developed turbulent flow in a straight rotating channel with blowing and suction through opposite walls. The channel is rotated about its spanwise axis; a mode of rotation that amplifies the turbulent activity on one wall and suppresses it on the opposite wall leading to reverse transition at high rotation rates. The present predictions are based on the solution of the Reynolds-averaged forms of the governing equations using a second-order accurate finite-volume formulation. The effects of turbulence on momentum transport were accounted for by using a differential Reynolds-stress transport closure. A number of alternative formulations for the difficult fluctuating pressure–strain correlations term were assessed. These included a high turbulence Reynolds-number formulation that required a “wall-function” to bridge the near-wall region as well as three alternative low Reynolds-number formulations that permitted integration through the viscous sublayer, directly to the walls. The models were assessed by comparisons with experimental data for flows in channels at Reynolds-numbers spanning the range of laminar, transitional, and turbulent regimes. The turbulent heat fluxes were modeled via two very different approaches: one involved the solution of a modeled differential transport equation for each of the three heat-flux components, while in the other, the heat fluxes were obtained from an explicit algebraic model derived from tensor representation theory. The results for rotating channels with wall suction and blowing show that the algebraic model, when properly extended to incorporate the effects of rotation, yields results that are essentially identically to those obtained with the far more complex and computationally intensive heat-flux transport closure. This outcome argues in favor of incorporation of the algebraic model in industry-standard turbomachinery codes.


1967 ◽  
Vol 89 (3) ◽  
pp. 258-268 ◽  
Author(s):  
A. W. Black ◽  
E. M. Sparrow

An experimental investigation, supported by analysis, was performed to determine the heat transfer characteristics for turbulent flow in a circular tube with circumferentially varying wall temperature and wall heat flux. Air was the working fluid. The desired boundary conditions were achieved by electric heating within the wall of a tube whose thickness varied circumferentially. In this way, ratios of maximum-to-minimum wall heat flux as large as two were attained. Local heat transfer coefficients, deduced from the experimental data, display a circumferential variation that is substantially smaller than the heat flux variation. In general, lower heat transfer coefficients correspond to circumferential locations of greater heating, while higher coefficients correspond to locations of lesser heating. The predictions of prior analyses appear to overestimate the circumferential variation of the heat transfer coefficient. A specially designed probe was employed to measure the radial and circumferential temperature distributions within the flowing airstream. On the basis of these measurements, as well as from the heat transfer results, it is concluded that, in the neighborhood of the wall, the tangential turbulent diffusivity is greater than the radial turbulent diffusivity. The axial thermal development was found to be more rapid on the lesser-heated side of the tube than on the greater-heated side. Experimentally determined circumferential-average heat transfer coefficients agreed well with the predictions of analysis.


Author(s):  
Arash Saidi ◽  
Jungho Kim

A technique for determining the heat transfer on the far surface of a wall based on measuring the heat transfer and temperature on the near wall is presented. Although heat transfer measurements have previously been used to augment temperature measurements in inverse heat conduction methods, the sensors used alter the heat flow through the surface, disturbing the very quantity that is desired to be measured. The ideal sensor would not alter the boundary condition that would exist were the sensor not present. The innovation of this technique in that it has minimal impact on the wall boundary condition. Since the sensor is placed on the surface of the wall, no alteration of the wall is needed. The theoretical basis for the experimental technique as well as experimental results showing the heat flux sensor performance is presented.


Sign in / Sign up

Export Citation Format

Share Document