scholarly journals Isotope labeling and infrared multiple-photon photodissociation investigation of product ions generated by dissociation of [ZnNO3(CH3OH)2]+: Conversion of methanol to formaldehyde

2019 ◽  
Vol 25 (1) ◽  
pp. 58-72
Author(s):  
Evan Perez ◽  
Theodore A Corcovilos ◽  
John K Gibson ◽  
Jonathan Martens ◽  
Giel Berden ◽  
...  

Electrospray ionization was used to generate species such as [ZnNO3(CH3OH)2]+ from Zn(NO3)2•XH2O dissolved in a mixture of CH3OH and H2O. Collision-induced dissociation of [ZnNO3(CH3OH)2]+ causes elimination of CH3OH to form [ZnNO3(CH3OH)]+. Subsequent collision-induced dissociation of [ZnNO3(CH3OH)]+ causes elimination of 47 mass units (u), consistent with ejection of HNO2. The neutral loss shifts to 48 u for collision-induced dissociation of [ZnNO3(CD3OH)]+, demonstrating the ejection of HNO2 involves intra-complex transfer of H from the methyl group methanol ligand. Subsequent collision-induced dissociation causes the elimination of 30 u (32 u for the complex with CD3OH), suggesting the elimination of formaldehyde (CH2 = O). The product ion is [ZnOH]+. Collision-induced dissociation of a precursor complex created using CH3-18OH shows the isotope label is retained in CH2 = O. Density functional theory calculations suggested that the “rearranged” product, ZnOH with bound HNO2 and formaldehyde is significantly lower in energy than ZnNO3 with bound methanol. We therefore used infrared multiple-photon photodissociation spectroscopy to determine the structures of both [ZnNO3(CH3OH)2]+ and [ZnNO3(CH3OH)]+. The infrared spectra clearly show that both ions contain intact nitrate and methanol ligands, which suggests that rearrangement occurs during collision-induced dissociation of [ZnNO3(CH3OH)]+. Based on the density functional theory calculations, we propose that transfer of H, from the methyl group of the CH3OH ligand to nitrate, occurs in concert with the formation of a Zn–C bond. After dissociation to release HNO2, the product rearranges with the insertion of the remaining O atom into the Zn–C bond. Subsequent C–O bond cleavage, with H transfer, produces an ion–molecule complex composed of [ZnOH]+ and O = CH2.

2019 ◽  
Vol 25 (1) ◽  
pp. 30-43 ◽  
Author(s):  
Qiuyan Jin ◽  
Jiaye Li ◽  
Alireza Ariafard ◽  
Allan J Canty ◽  
Richard AJ O’Hair

Gas-phase ion trap mass spectrometry experiments and density functional theory calculations have been used to examine the routes to the formation of the 1,8-naphthyridine (napy) ligated geminally dimetallated phenyl complexes [(napy)Cu2(Ph)]+, [(napy)Ag2(Ph)]+ and [(napy)CuAg(Ph)]+ via extrusion of CO2 or SO2 under collision-induced dissociation conditions from their corresponding precursor complexes [(napy)Cu2(O2CPh)]+, [(napy)Ag2(O2CPh)]+, [(napy)CuAg(O2CPh)]+ and [(napy)Cu2(O2SPh)]+, [(napy)Ag2(O2SPh)]+, [(napy)CuAg(O2SPh)]+. Desulfination was found to be more facile than decarboxylation. Density functional theory calculations reveal that extrusion proceeds via two transition states: TS1 enables isomerization of the O, O-bridged benzoate to its O-bound form; TS2 involves extrusion of CO2 or SO2 with the concomitant formation of the organometallic cation and has the highest barrier. Of all the organometallic cations, only [(napy)Cu2(Ph)]+ reacts with water via hydrolysis to give [(napy)Cu2(OH)]+, consistent with density functional theory calculations which show that hydrolysis proceeds via the initial formation of the adduct [(napy)Cu2(Ph)(H2O)]+ which then proceeds via TS3 in which the coordinated H2O is deprotonated by the coordinated phenyl anion to give the product complex [(napy)Cu2(OH)(C6H6)]+, which then loses benzene.


RSC Advances ◽  
2016 ◽  
Vol 6 (22) ◽  
pp. 18695-18702 ◽  
Author(s):  
José L. C. Fajín ◽  
M. Natália D. S. Cordeiro ◽  
José R. B. Gomes

Density functional theory calculations were used to study the dissociation of the O–H bond in methanol on several bimetallic transition metal surfaces, composed of elements showing high or moderate activity towards this reaction, namely, Ni, Rh, Ru, Ir, Pd, Au, Zn and Cu.


2006 ◽  
Vol 71 (11-12) ◽  
pp. 1525-1531 ◽  
Author(s):  
Wojciech Grochala

The enthalpy of four polymorphs of CaN has been scrutinized at 0 and 100 GPa using density functional theory calculations. It is shown that structures of diamagnetic calcium diazenide (Ca2N2) are preferred over the cubic ferromagnetic polymorph (CaN) postulated before, both at 0 and 100 GPa.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Chih-Chuen Lin ◽  
Phani Motamarri ◽  
Vikram Gavini

AbstractWe present a tensor-structured algorithm for efficient large-scale density functional theory (DFT) calculations by constructing a Tucker tensor basis that is adapted to the Kohn–Sham Hamiltonian and localized in real-space. The proposed approach uses an additive separable approximation to the Kohn–Sham Hamiltonian and an L1 localization technique to generate the 1-D localized functions that constitute the Tucker tensor basis. Numerical results show that the resulting Tucker tensor basis exhibits exponential convergence in the ground-state energy with increasing Tucker rank. Further, the proposed tensor-structured algorithm demonstrated sub-quadratic scaling with system-size for both systems with and without a gap, and involving many thousands of atoms. This reduced-order scaling has also resulted in the proposed approach outperforming plane-wave DFT implementation for systems beyond 2000 electrons.


Sign in / Sign up

Export Citation Format

Share Document