Acoustics measurements of military-style supersonic beveled nozzle jets with interior corrugations

2016 ◽  
Vol 16 (1-2) ◽  
pp. 21-43 ◽  
Author(s):  
Russell W Powers ◽  
Dennis K McLaughlin

Increasingly powerful and noisy military aircraft have generated the need for research leading to the development of supersonic jet noise reduction devices. The hot, high speed supersonic jets exhausting from military aircraft during takeoff present a most challenging problem. The present study extends prior research on two methods of noise reduction. The first is the internal nozzle corrugations pioneered by Seiner et al. and the second is the beveled exit plane explored most recently by Viswanathan. A novel research idea of creating fluidic corrugations similar to the nozzle corrugations has been initiated by Penn State. To further the understanding and analysis of the fluidic corrugations, the present study focuses on the flow field and acoustic field of nozzles with two, three, and six conventional, hardwalled corrugations. The effect of the combination of the internal corrugations with a beveled nozzle is explored. The results show that significant noise reductions of over 3 dB of the mixing noise and the broadband shock-associated noise can be achieved. The combination of the beveled nozzle and the internal nozzle corrugations showed that there is less azimuthal dependence of the acoustic field than for the purely beveled nozzle. The combination nozzle was shown to reduce the noise over a wider range of polar angles and operating conditions than either the purely beveled nozzle or the purely corrugated nozzle.

1998 ◽  
Vol 120 (3) ◽  
pp. 471-476 ◽  
Author(s):  
Milo D. Dahl ◽  
Philip J. Morris

In this paper, predictions are made of noise radiation from single, supersonic, axisymmetric jets. We examine the effects of changes in operating conditions and the effects of simulated enhanced mixing that would increase the spreading rate of the jet shear layer on radiated noise levels. The radiated noise in the downstream direction is dominated by mixing noise and, at higher speeds, it is well described by the instability wave noise radiation model. Further analysis with the model shows a relationship between changes in spreading rate due to enhanced mixing and changes in the far field radiated peak noise levels. The calculations predict that enhanced jet spreading results in a reduction of the radiated peak noise level.


2008 ◽  
Vol 112 (1133) ◽  
pp. 381-394 ◽  
Author(s):  
G. M. Lilley

Abstract The present paper reviews and discusses the physical mechanisms of noise generation and reduction in turbulent flows with their applications towards aircraft noise reduction at takeoff and on the approach. This work began in 1948 when Lilley undertook an experimental investigation into the source of jet noise as a necessary precursor to finding methods for the reduction of high speed jet engine noise on civil jet airliners. Westley and Lilley completed this experimental programme in 1951, which included the design of a range of devices for high speed jet noise reduction. It was about this time that similar studies on jet noise were being started elsewhere and in particular by Lassiter and Hubbard in USA. The major contribution to the subject of turbulence as a source of noise came from Sir James Lighthill’s remarkable theory in 1952. In spite of the difficulties attached to theoretical and experimental studies on noise from turbulence, it is shown that with the accumulated knowledge on aerodynamic noise over the past 50 years, together with an optimisation of aircraft operations including flight trajectories, we are today on the threshold of approaching the design of commercial aircraft with turbofan propulsion engines that will not be heard above the background noise of the airport at takeoff and landing beyond 1-2km, from the airport boundary fence. It is evident that in the application of this work, which centres on the physical mechanisms relating to the generation of noise from turbulence and turbulent shear flows, to jet noise, there is not one unique mechanism of jet noise generation for all jet Mach numbers. This author in this publication has concentrated on what appears to be the dominant mechanism of noise generation from turbulence, where the mean convection speeds of the turbulence are subsonic. The noise generated at transonic and supersonic jet speeds invariably involves extra mechanisms, which are only briefly referred to here.


Author(s):  
Ryuichi Okada ◽  
Toshinori Watanabe ◽  
Seiji Uzawa ◽  
Takehiro Himeno ◽  
Tsutomu Oishi

Jet noise reduction is essential for environmentally-friendly civil transport. Since jet noise becomes very intense in the case of supersonic aircraft, noise reduction is crucial topic for the realization of next-generation supersonic transport. In the present study, experimental investigations were performed to clarify the effect of microjet injection on supersonic jet noise and flow field. The experiments were focused on supersonic jet with Mach number up to 1.47, which was generated from a rectangular nozzle with high aspect ratio. Far-field acoustic measurements were conducted for widely ranged microjet conditions to understand the influence of the condition on characteristics of supersonic jet noise and flow field. For understanding the unsteady behavior of the flow field and the relation with noise reduction, flow field visualization was performed with schlieren technique using a high-speed camera.


2022 ◽  
Author(s):  
Junhui Liu ◽  
Yu Yu Khine ◽  
Mohammad Saleem ◽  
Omar Lopez Rodriguez ◽  
Ephraim J. Gutmark

2021 ◽  
Author(s):  
Junhui Liu ◽  
Yu Yu Khine ◽  
Mohammad Saleem ◽  
Omar Lopez Rodriguez ◽  
Ephraim Gutmark

AIAA Journal ◽  
2011 ◽  
Vol 49 (5) ◽  
pp. 932-944 ◽  
Author(s):  
K. Viswanathan ◽  
M. J. Czech
Keyword(s):  

2022 ◽  
Author(s):  
Mohammad Saleem ◽  
Omar Lopez Rodriguez ◽  
Ephraim J. Gutmark ◽  
Junhui Liu ◽  
Yu Yu Khine

Author(s):  
Brenton Greska ◽  
Anjaneyulu Krothapalli ◽  
Nathan Burnside ◽  
William Horne

Sign in / Sign up

Export Citation Format

Share Document