spreading rate
Recently Published Documents


TOTAL DOCUMENTS

365
(FIVE YEARS 117)

H-INDEX

42
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Alexander L. Peace ◽  
Jordan J.J. Phethean

ABSTRACT It is well established that plate-tectonic processes operate on a global scale and that spatially separate but temporally coincident events may be linked. However, identifying such links in the geological record and understanding the mechanisms involved remain speculative. This is particularly acute during major geodynamic events, such as the dispersal of supercontinents, where multiple axes of breakup may be present as well as coincidental collisional events. To explore this aspect of plate tectonics, we present a detailed analysis of the temporal variation in the mean half rate of seafloor spreading in the Indian and Atlantic Oceans, as well as plate-kinematic attributes extracted from global plate-tectonic models during the dispersal of Gondwana since ca. 200 Ma. Our analysis shows that during the ~20 m.y. prior to collision between India and Asia at ca. 55 Ma, there was an increase in the mean rate of seafloor spreading in the Indian Ocean. This manifests as India rapidly accelerating toward Asia. This event was then followed by a prompt deceleration in the mean rate of Indian Ocean seafloor spreading after India collided with Asia at ca. 55 Ma. Since inception, the mean rate of seafloor spreading in the Indian Ocean has been generally greater than that in the Atlantic Ocean, and the period of fastest mean half spreading rate in the Indian Ocean was coincident with a slowdown in mean half seafloor spreading rate in the competing Atlantic Ocean. We hypothesize that faster and hotter seafloor spreading in the Indian Ocean resulted in larger ridge-push forces, which were transmitted through the African plate, leading to a slowdown in Atlantic Ocean spreading. Following collision between India and Asia, and a slowdown of Indian Ocean spreading, Atlantic spreading rates consequently increased again. We conclude that the processes in the Indian and Atlantic Oceans have likely remained coupled throughout their existence, that their individual evolution has influenced each other, and that, more generally, spreading in one basin inevitably influences proximal regions. While we do not believe that ridge push is the main cause of plate motions, we consider it to have played a role in the coupling of the kinematic evolution of these oceans. The implication of this observation is that interaction and competition between nascent ocean basins and ridges during supercontinent dispersal exert a significant control on resultant continental configuration.


2021 ◽  
Author(s):  
Jaan Kalda ◽  
Mart Ratas ◽  
Taavet Kalda ◽  
Azer Ramazanli ◽  
Heiko Herrmann ◽  
...  

Abstract The dynamics of pandemics is most often analyzed using a variation of the SIR (Susceptible-Infected-Recovered) model1, the key parameter of which is the basic reproduction number R0. Some evidences suggest that the contagion-spreading networks are scale-free, with the biggest nodes corresponding to superspreaders2,3. However, current understanding of the scale-free topology of these networks, and of the implications of such topology for the dynamics of pandemics is incomplete. Here we show that the world-wide spreading rate of COVID-19 gives an indirect evidence that the underlying virus-spreading network is scale-free, with the degree distribution exponent close to 2. Furthermore, our results show that the spreading rate of a virus is predominantly controlled by superspreaders who typically get infected and acquire immunity during the initial outbreak stage of the pandemic. Thereby the biggest nodes get immune and hence, removed from the network, resulting in a rapid decrease of the effective reproduction number. These findings are important for understanding the dynamics of pandemics, and for designing optimal virus control strategies. In particular, screening a population for the number of antibodies of a set of viruses can reveal potential superspreaders, the vaccination or isolation of whom can impede a pandemic at its early stage.


2021 ◽  
pp. 105-114
Author(s):  
Danang Febrianto ◽  
Dewanti ◽  
Imam Muthohar

Bicycle-riding/cycling has reportedly become a new trend in various cities of Indonesia, as well as the Special Region of Yogyakarta, amidst the social restriction applied by the Government to decrease the spreading rate of the COVID-19 virus. This is observed to be a healthier effort in strengthening the immune system during the pandemic. However, the positive growth of this trend is proportional to the increasing data on bicycle accidents. This was due to the increased rate of injured and dead victims from 2017 to 2020. The human behavior factor is also one of the factors causing the high rate of these bicycle accidents. Therefore, this study aims to analyze the factors affecting the behavior of cyclists in the Special Region of Yogyakarta, to reduce the continuous increase of accidents. The data used in this study were the result of the Cyclist Behavior Questionnaire (CBQ) on the Yogyakarta riders. The samples were obtained through the purposive sampling method, using an online questionnaire with a google form and acquiring 362 respondents. Furthermore, the analytical method used was the structural equation modeling (SEM), through the AMOS 22.0 software. The results indicated that the regulation scale directly affected risk perception and cyclist behaviors (risky and positive). However, age only affected their behaviors, which did not directly affect the accidents. The regulation scale then directly affected the risky behavior of cyclists, with risk perception observed as the mediator, implying that the cyclists' knowledge of road safety regulations influenced individual behaviors. In conclusion, these results are expected to be one of the considerations in the policy of the government, to carry out the overall development of transportation, especially bicycles.


Author(s):  
Kayode Oshinubi ◽  
◽  
Fahimah Al-Awadhi ◽  
Mustapha Rachdi ◽  
Jacques Demongeot ◽  
...  

Coronavirus (COVID-19) has continued to be a global threat to public health. When the coronavirus pandemic began early in 2020, experts wondered if there would be waves of cases, a pattern seen in other virus pandemics. The overall pattern so far has been one of increasing cases of COVID-19 followed by a decline, and we observed a second wave of increased cases and yet we are still exploring this pandemic. Hence, updating the prediction model for the new cases of COVID-19 for different waves is essential to monitor the spreading of the virus and control the disease. Time series models have extensively been considered as the convenient methods to predict the prevalence or spreading rate of the disease. This study, therefore, aimed to apply the Autoregressive Integrated Moving Average (ARIMA) modelling approach for predicting new cases of coronavirus (COVID-19). We propose a deterministic method to predict the basic reproduction number Ro of first and second wave transition of COVID-19 cases in Kuwait and also to forecast the daily new cases and deaths of the pandemic in the country. Forecasting has been done using ARIMA model, Exponential smoothing model, Holt’s method, Prophet forecasting model and machine learning models like log-linear, polynomial and support vector regressions. The results presented aligned with other methods used to predict Ro in first and second waves and the forecasting clearly shows the trend of the pandemic in Kuwait. The deterministic prediction of Ro is a good forecasting tool available during the exponential phase of the contagion, which shows an increasing trend during the beginning of the first and second waves of the pandemic in Kuwait. The results show that support vector regression has achieved the best performance for prediction while a simple exponential model without trend gives good optimal results for forecasting of Kuwait COVID-19 data.


2021 ◽  
Author(s):  
Jie Chen ◽  
Wayne Crawford ◽  
Mathilde Cannat

Abstract Successive flip-flop detachment faults in a nearly-amagmatic region of the ultraslow-spreading Southwest Indian Ridge (SWIR) at 64°30'E accommodate ~100% of plate divergence, with mostly ultramafic seafloor. As magma is the main heat carrier to the oceanic lithosphere, the nearly-amagmatic SWIR 64°30'E is expected to have a very thick lithosphere. Here, our microseismicity data shows a 15-km thick seismogenic lithosphere, actually thinner than the more magmatic SWIR Dragon Flag detachment with the same spreading rate. This challenges current models of how spreading rate and melt supply control the thermal regime of mid-ocean ridges. Microearthquakes with normal focal mechanisms are colocated with seismically imaged damage zones of the detachment and reveal hanging-wall normal faulting, which is not seen at more magmatic detachments at the SWIR or the Mid-Atlantic Ridge. We also document a two-day seismic swarm, interpret as caused by an upward-migrating melt intrusion in the detachment footwall (6-11 km), triggering a sequence of shallower (~1.5 km) tectonic earthquakes in the detachment fault plane. This points to a possible link between sparse magmatism and tectonic failure at melt-poor ultraslow ridges.


Author(s):  
Pilar López ◽  
Ana M. Tarquis ◽  
Benjamín Skadden ◽  
Ania Matulka ◽  
José M. Redondo

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
John M. O’Connor ◽  
Wilfried Jokat ◽  
Peter J. Michael ◽  
Mechita C. Schmidt-Aursch ◽  
Daniel P. Miggins ◽  
...  

AbstractDespite progress in understanding seafloor accretion at ultraslow spreading ridges, the ultimate driving force is still unknown. Here we use 40Ar/39Ar isotopic dating of mid-ocean ridge basalts recovered at variable distances from the axis of the Gakkel Ridge to provide new constraints on the spatial and temporal distribution of volcanic eruptions at various sections of an ultraslow spreading ridge. Our age data show that magmatic-dominated sections of the Gakkel Ridge spread at a steady rate of ~11.1 ± 0.9 mm/yr whereas amagmatic sections have a more widely distributed melt supply yielding ambiguous spreading rate information. These variations in spreading rate and crustal accretion correlate with locations of hotter thermochemical anomalies in the asthenosphere beneath the ridge. We conclude therefore that seafloor generation in ultra-slow spreading centres broadly reflects the distribution of thermochemical anomalies in the upper mantle.


Author(s):  
Peter J. Stafford

AbstractInversions of empirical data and ground-motion models to find Fourier spectral parameters can result in parameter combinations that produce over-saturation of short-period response spectral ordinates. While some evidence for over-saturation in empirical data exists, most ground-motion modellers do not permit this scaling within their models. Host-to-target adjustments that are made to published ground-motion models for use in site-specific seismic hazard analyses frequently require the identification of an equivalent set of Fourier spectral parameters. In this context, when inverting response spectral models that do not exhibit over-saturation effects, it is desirable to impose constraints upon the Fourier parameters to match the scaling of the host-region model. The key parameters that determine whether over-saturation arises are the geometric spreading rate (γ) and the exponential rate within near-source saturation models (hβ). The article presents the derivation of simple nonlinear constraints that can be imposed to prevent over-saturation when undertaking Fourier spectral inversions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yi-Ching Yeh ◽  
Jing-Yi Lin ◽  
Shu-Kun Hsu ◽  
Ching-Hui Tsai ◽  
Ching-Min Chang

AbstractThe West Philippine Basin (WPB) has started opening at ~ 58 Ma and ceased spreading at ~ 33 Ma, developing a fast spreading (~ 44 mm/yr half-spreading rate) magmatic episode between 58 and 41 Ma and the second amagmatic episode between 41 and 33 Ma. The occurrence of the first stage of spreading is closely related to the Oki-Daito mantle plume and related Benham Rise (BR) and Urdaneta Plateau (UP) activity. To the east of the Luzon–Okinawa Fracture Zone (LOFZ), BR was the most active volcanism from 48 to 41 Ma. The geomagnetic ages on both sides of the LOFZ have been determined; however, their causal relationship and evolution in the WPB remain unclear. In this study, we performed integrated analyses of multichannel seismic data and swath bathymetry data for the area to the west of the LOFZ. To the west of the LOFZ, the Gagua Rise (GR), is identified by a high residual free-air gravity anomaly, volcanic seamount chains and an overlapping spreading center. The GR is located at magnetic isochrons C20/C22 (50 to 44 Ma) and shows a thick oceanic crust of at least 12.7 km. We first propose an oceanic plateau named Great Benham Rise (GBR) which includes GR, UP and BR. We infer that the GR was a portion of the GBR since ~ 49 Ma and was separated from the GBR at ~ 41 Ma by the right-lateral LOFZ motion. Later, the relict GBR magmatism only continued in the area to the east of the LOFZ. Overall, the GBR dominates the spreading history of the WPB.


Sign in / Sign up

Export Citation Format

Share Document