Life-cycle management cost analysis of transportation bridges equipped with seismic structural health monitoring systems

2021 ◽  
pp. 147592172199662
Author(s):  
Michela Torti ◽  
Ilaria Venanzi ◽  
Simon Laflamme ◽  
Filippo Ubertini

Life-cycle cost analysis is an approach that has gained popularity for assisting the design of civil infrastructures. The life-cycle cost analysis approach can be leveraged for structures equipped with structural health monitoring systems in order to quantify the benefits of the technology and de facto support its long-term implementation. However, for new structures, the long-term assessment of the expected value of the total investment cost, in terms of the current worth at the design time, is still the focus of ongoing research due to unknowns and uncertainties on the impact of the structural health monitoring system on long-term structural performance. This article proposes a new combined model of life-cycle cost formulation and simulation methodology for the long-term financial assessment of transportation bridges equipped with seismic structural health monitoring systems, in order to evaluate the total costs and benefits offered by such monitoring systems for post-seismic assessments. The formulation characterizes the time evolution of bridge management cost terms, highlighting the most sensitive parameters. The simulation methodology allows to quantitatively weigh each maintenance action on the total cost based on when the action is performed. The model is used to compare structures managed by the traditional approach of post-earthquake inspection versus those managed by a condition-based approach enabled by structural health monitoring systems. The originality of the model empowers the comparison by payback time, defined as the break-even point between costs and benefits of a structural health monitoring system, as well as by economic gain, defined as the difference between the total costs of an unmonitored versus a monitored structure through the end of service life. The proposed model is demonstrated through parametric analyses on a case study consisting of a continuous steel-concrete composite bridge, where the structural health monitoring system is used to monitor the elastic limit state condition of bending forces in piers during the earthquake.

Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 110 ◽  
Author(s):  
Shao-Fei Jiang ◽  
Ze-Hui Qiao ◽  
Ni-Lei Li ◽  
Jian-Bin Luo ◽  
Sheng Shen ◽  
...  

Due to the long-term service, Chinese ancient timber buildings show varying degrees of wear. Thus, structural health monitoring (SHM) for these cultural and historical treasures is desperately needed to evaluate the service status. Although there are some FBG sensing-based SHM systems, they are not suitable for Chinese ancient timber buildings due to the differences in architectural types, structural loads, materials, and environment. Besides, a technical gap in Fiber Bragg grating (FBG) sensing-based column inclination monitoring exists. To overcome these weaknesses, this paper develops an FBG sensing-based structural health monitoring system for Chinese ancient Chuan-dou-type timber buildings that aims at monitoring structural deformation, i.e., beam deflection and column inclination, temperature, humidity, and fire around the building. An in-situ test and simulation analyses were conducted to verify the effectiveness of the developed SHM system. To validate the long-term-operation of the developed SHM system, monitoring data within 15 months were analyzed. The results show good agreement between the developed SHM system in this paper and other methods. In addition, the SHM system operated well in the first year after its deployment. This implies that the developed SHM system is applicable and effective in the health state monitoring of Chinese ancient Chuan-dou-type timber buildings, laying a foundation for damage prognosis of such types of timber buildings.


2017 ◽  
Vol 20 (5) ◽  
pp. 674-681 ◽  
Author(s):  
XW Ye ◽  
T Liu ◽  
YQ Ni

The long-term performance of engineering structures in a corrosive environment will be significantly affected by the coupled action of corrosion and fatigue. In this article, a probabilistic corrosion fatigue analytical model is proposed by taking into account the effects of corrosion-induced reduction of the cross-sectional area and deterioration of the fatigue strength of structural components. The proposed model is exemplified to evaluate the probabilistic corrosion fatigue life of a typical welded joint in the suspension Tsing Ma Bridge instrumented with a long-term structural health monitoring system. A genetic algorithm–based mixture parameter estimation method is developed to facilitate the multimodal modeling of stress spectrum derived from the long-term monitoring data of dynamic strain. The achieved results demonstrate that with the increase in the service life, the reliability index of the investigated typical welded joint is dramatically reduced under the combined effect of corrosion and fatigue.


Sign in / Sign up

Export Citation Format

Share Document