Assessing glare, Part 4: Generic models predicting discomfort glare of light-emitting diodes

2017 ◽  
Vol 50 (5) ◽  
pp. 739-756 ◽  
Author(s):  
Y Yang ◽  
MR Luo ◽  
WJ Huang

Two generic models to predict the influence of the luminance uniformity and spectral power distribution of light-emitting diode luminaires on discomfort glare were developed. One model was an extension of the empirical Unified Glare Rating, the other was based on a colour appearance model for unrelated colours. A new experiment was carried out to verify the performance of the generic models. There were twelve glare sources, having three types of luminance uniformity and four spectral power distributions. The results showed both generic models outperformed Unified Glare Rating but gave similar performance to each other. The generic model based on the colour appearance model bridges the gap between glare perception and human vision theory.

2021 ◽  
Vol 13 (9) ◽  
pp. 4852
Author(s):  
Jack Ngarambe ◽  
Inhan Kim ◽  
Geun Young Yun

Spectral power distribution (SPD) is an essential element that has considerable implications on circadian energy and the perception of lit environments. The present study assessed the potential influences of SPD on energy consumption (i.e., considering circadian energy), visual comfort, work performance and mood. Two lighting conditions based on light-emitting diode (LED) and organic light-emitting diode (OLED) were used as proxies for SPDs of different spectral content: dominant peak wavelength of 455 nm (LED) and 618 nm (OLED). Using measured photometric values, the circadian light (CL), melatonin suppression (MS), and circadian efficacy (CE) of the two lighting sources were estimated via a circadian-phototransduction model and compared. Additionally, twenty-six participants were asked to evaluate the said lit environments subjectively in terms of visual comfort and self-reported work performance. Regarding circadian lighting and the associated energy implications, the LED light source induced higher biological actions with relatively less energy than the OLED light source. For visual comfort, OLED lighting-based conditions were preferred to LED lighting-based conditions, while the opposite was true when considering work performance and mood. The current study adds to the on-going debate regarding human-centric lighting, particularly considering the role of SPD in energy-efficient and circadian lighting practices.


2019 ◽  
Vol 52 (2) ◽  
pp. 167-188 ◽  
Author(s):  
C Jarboe ◽  
J Snyder ◽  
MG Figueiro

Architectural lighting has traditionally addressed visual performance and horizontal illuminance on the work plane, later focussing on energy efficiency, while only recently paying particular regard to human health outcomes. The present study evaluated the effectiveness of several light-emitting diode lighting strategies for delivering circadian stimulus to occupants of a typical office space while minimizing energy use. The study employed photometric simulations in a typical open-office space, delivering a criterion circadian stimulus of 0.3 to calculation points modelled at the simulated occupants’ eye level. Six luminaire types, two luminous intensity distributions, six spectral power distributions and two horizontal illuminances were evaluated, resulting in 144 unique lighting conditions. Additionally, the study calculated the discomfort glare for selected luminaires with the highest total lumen output, smallest aperture and direct-only luminous intensity distributions at the higher of the two horizontal illuminances (500 lx). The most impactful strategy involved supplementing common overhead lighting with a desktop luminaire delivering light directly to the simulated office occupants’ eyes, which provided greater circadian stimulus and used less energy than overhead luminaires that were capable of delivering the criterion circadian stimulus of 0.3.


2015 ◽  
Vol 49 (3) ◽  
pp. 329-342 ◽  
Author(s):  
XF Feng ◽  
W Xu ◽  
QY Han ◽  
SD Zhang

Light emitting diodes with high colour quality were investigated to enhance colour appearance and improve observers' preference for the illuminated objects. The spectral power distributions of the light emitting diodes were optimised by changing the ratios of the narrow band red, green and blue light emitting diodes, and the phosphor-converted broad-band light emitting diode to get the desired colour rendering index and high gamut area index. The influence of the light emitting diode light on different coloured fabrics was investigated. The experimental results and the statistical analysis show that by optimising the red, green, blue components the light emitting diode light can affect the colour appearance of the illuminated fabrics positively and make the fabrics appear more vivid and saturated due to the high gamut area index. Observers indicate a high preference for the colours whose saturations are enhanced. The results reveal that the colour-enhanced light emitting diode light source can better highlight products and improve visual impression over the ceramic metal halide lamp and the phosphor-converted light emitting diode light source.


2017 ◽  
Vol 50 (6) ◽  
pp. 921-936 ◽  
Author(s):  
WJ Huang ◽  
Y Yang ◽  
M Ronnier Luo

This paper describes an experiment to investigate discomfort glare caused by white light-emitting diode (LED) lights having different spectral power distributions. It included two groups: a ‘Metamerism’ group and a ‘correlated colour temperatures (CCT)’ group. In the former group, it was found that white lights at 7000 K constructed from different blue LEDs and the same red and green LEDs gave about the same glare perception. In the latter group, there was a significant difference in glare perception between white lights having different CCTs. Finally, glare models, including unified glare rating (UGR) and the newly derived QUGRspd, and mUGRspd models, were tested using the data from the experiment. All of them gave quite accurate predictions of the data.


2016 ◽  
Vol 50 (4) ◽  
pp. 596-615 ◽  
Author(s):  
Y Yang ◽  
Ronnier M Luo ◽  
WJ Huang

This paper describes an experiment for assessing the discomfort glare caused by light emitting diodes (LEDs) having different colours. The results showed that coloured LEDs induce more discomfort glare than a white LED. On comparing different coloured LEDs, blue ones gave the highest glare perception, especially for those having shorter peak wavelengths. Different earlier proposed luminous efficiency functions for discomfort glare were applied to re-define luminance. This led to modified unified glare ratings, which achieved very accurate predictions of the visual results. A modified brightness based on a colour appearance model for unrelated lights was used to predict glare and also performed very well.


Author(s):  
David Baeza Moyano ◽  
Roberto Alonso González Lezcano

Office work has so far been carried out in company buildings and was largely based on the use of paper on a horizontal surface. Due to multiple reasons, more workers are working in their homes with electronic devices. As a result, both the working environment and personal tools are changing. Since the discovery about 20 years ago of the non-visual ways of light absorption, it was known that apart from the image forming effects (IF) of light from which the criteria for correct lighting have been developed, non-image forming effects (NIF) of light exist. The discovery of NIF has enhanced researcher belief in the importance of daylighting and has raised new criteria to be taken into account for proper interior lighting. Due to all the factors mentioned above, the parameters to be met by a luminaire and its environment for proper lighting of the workstation have been modified and expanded. The rapid advance in the development of new light-emitting diode (LED) luminaires with which the spectral power distribution (SPD) can be practically created opens the door to a genuine technological revolution comparable to the invention of electric lighting around 150 years ago. The authors of this study will review the latest published studies on the importance of light in our lives, IF and NIF effects of light, the parameters which from these effects are suggested to be taken into account for a correct indoor lighting, the regulations in force on indoor lighting workplaces, and proposals to improve indoor lighting and therefore the quality of life of workers.


Sign in / Sign up

Export Citation Format

Share Document