Treatment Planning for Conformal Proton Radiation Therapy

2003 ◽  
Vol 2 (5) ◽  
pp. 389-399 ◽  
Author(s):  
Marc R. Bussière ◽  
Judith A. Adams

Clinical results from various trials have demonstrated the viability of protons in radiation therapy and radiosurgery. This has motivated a few large medical centers to design and build expensive hospital based proton facilities based proton facilities (current cost estimates for a proton facility is around $100 million). Until this development proton therapy was done using retrofitted equipment originally designed for nuclear experiments. There are presently only three active proton therapy centers in the United States, 22 worldwide. However, more centers are under construction and being proposed in the US and abroad. The important difference between proton and x-ray therapy is in the dose distribution. X-rays deposit most of their dose at shallow depths of a few centimeters with a gradual decay with depth in the patient. Protons deliver most of their dose in the Bragg peak, which can be delivered at most clinically required depths followed by a sharp fall-off. This sharp falloff makes protons sensitive to variations in treatment depths within patients. Treatment planning incorporates all the knowledge of protons into a process, which allows patients to be treated accurately and reliably. This process includes patient immobilization, imaging, targeting, and modeling of planned dose distributions. Although the principles are similar to x-ray therapy some significant differences exist in the planning process, which described in this paper. Target dose conformality has recently taken on much momentum with the advent of intensity modulated radiation therapy (IMRT) with photon beams. Proton treatments provide a viable alternative to IMRT because they are inherently conformal avoiding normal tissue while irradiating the intended targets. Proton therapy will soon bring conformality to a new high with the development of intensity modulated proton therapy (IMPT). Future challenges include keeping the cost down, increasing access to conventional proton therapy as well as the clinical implementation of IMPT. Computing advances are making Monte Carlo techniques more accessible to treatment planning for all modalities including proton therapy. This technique will allow complex delivery configurations to be properly modeled in a clinical setting.

2021 ◽  
Vol 9 ◽  
Author(s):  
Kristopher A. Lyons ◽  
Theodore H. Arsenault ◽  
Zi Ouyang

Radiation therapy is an important cancer treatment. At least half of the cancer patients in the United States receive radiation therapy every year. X-rays are often used in radiation therapy. How are X-rays produced? How do we use X-rays to treat cancer? This article answers these questions and explains the physics behind radiation therapy.


2021 ◽  
Vol 28 (2) ◽  
pp. 392-403
Author(s):  
P. Pellicioli ◽  
M. Donzelli ◽  
J. A. Davis ◽  
F. Estève ◽  
R. Hugtenburg ◽  
...  

Microbeam radiation therapy (MRT) is a developing radiotherapy, based on the use of beams only a few tens of micrometres wide, generated by synchrotron X-ray sources. The spatial fractionation of the homogeneous beam into an array of microbeams is possible using a multislit collimator (MSC), i.e. a machined metal block with regular apertures. Dosimetry in MRT is challenging and previous works still show differences between calculated and experimental dose profiles of 10–30%, which are not acceptable for a clinical implementation of treatment. The interaction of the X-rays with the MSC may contribute to the observed discrepancies; the present study therefore investigates the dose contribution due to radiation interaction with the MSC inner walls and radiation leakage of the MSC. Dose distributions inside a water-equivalent phantom were evaluated for different field sizes and three typical spectra used for MRT studies at the European Synchrotron Biomedical beamline ID17. Film dosimetry was utilized to determine the contribution of radiation interaction with the MSC inner walls; Monte Carlo simulations were implemented to calculate the radiation leakage contribution. Both factors turned out to be relevant for the dose deposition, especially for small fields. Photons interacting with the MSC walls may bring up to 16% more dose in the valley regions, between the microbeams. Depending on the chosen spectrum, the radiation leakage close to the phantom surface can contribute up to 50% of the valley dose for a 5 mm × 5 mm field. The current study underlines that a detailed characterization of the MSC must be performed systematically and accurate MRT dosimetry protocols must include the contribution of radiation leakage and radiation interaction with the MSC in order to avoid significant errors in the dose evaluation at the micrometric scale.


2019 ◽  
Vol 20 (2) ◽  
pp. 7-12 ◽  
Author(s):  
Steve Braunstein ◽  
Li Wang ◽  
Wayne Newhauser ◽  
Todd Tenenholz ◽  
Yi Rong ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1549
Author(s):  
Han Gyul Yoon ◽  
Yong Chan Ahn ◽  
Dongryul Oh ◽  
Jae Myoung Noh ◽  
Seung Gyu Park ◽  
...  

Purpose: To report the early clinical outcomes of combining intensity-modulated radiation therapy (IMRT) and intensity-modulated proton therapy (IMPT) in comparison with IMRT alone in treating oropharynx cancer (OPC) patients. Materials and Methods: The medical records of 148 OPC patients who underwent definitive radiotherapy (RT) with concurrent systemic therapy, from January 2016 till December 2019 at Samsung Medical Center, were retrospectively reviewed. During the 5.5 weeks’ RT course, the initial 16 (or 18) fractions were delivered by IMRT in all patients, and the subsequent 12 (or 10) fractions were either by IMRT in 81 patients (IMRT only) or by IMPT in 67 (IMRT/IMPT combination), respectively, based on comparison of adaptive re-plan profiles and availability of equipment. Propensity-score matching (PSM) was done on 76 patients (38 from each group) for comparative analyses. Results: With the median follow-up of 24.7 months, there was no significant difference in overall survival and progression free survival between groups, both before and after PSM. Before PSM, the IMRT/IMPT combination group experienced grade ≥ 3 acute toxicities less frequently: mucositis in 37.0% and 13.4% (p < 0.001); and analgesic quantification algorithm (AQA) in 37.0% and 19.4% (p = 0.019), respectively. The same trends were observed after PSM: mucositis in 39.5% and 15.8% (p = 0.021); and AQA in 47.4% and 21.1% (p = 0.016), respectively. In multivariate logistic regression, grade ≥ 3 mucositis was significantly less frequent in the IMRT/IMPT combination group, both before and after PSM (p = 0.027 and 0.024, respectively). AQA score ≥ 3 was also less frequent in the IMRT/IMPT combination group, both before and after PSM (p = 0.085 and 0.018, respectively). Conclusions: In treating the OPC patients, with comparable early oncologic outcomes, more favorable acute toxicity profiles were achieved following IMRT/IMPT combination than IMRT alone.


Sign in / Sign up

Export Citation Format

Share Document