metal block
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 9)

H-INDEX

9
(FIVE YEARS 2)

Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1416
Author(s):  
Jiansheng Li ◽  
Zhongchen Zhou ◽  
Tong Liu ◽  
Yu Zhao ◽  
Yan Lu ◽  
...  

Fabricating a dissimilar-metal block with micro/nano-multilayered structures is usually used by engineers and scientists because of their excellent mechanical properties. In the current work, multilayered copper/brass blocks were effectively fabricated by a synthetical DWFR technique, which includes the processes of diffusion welding, forging and rolling. Diffusion welding was used as the first operation to metallurgically bond the copper and brass sheets, with a Zn diffusion transition layer (thickness of ~100 μm), which can guarantee the bonding strength of copper/brass interfaces during the subsequent forging and rolling processes. After diffusion welding, the original copper/brass blocks were required to be forged, with its total thickness reduced to ~10 mm. This can further restrain the delamination of copper and brass layers during the final rolling process. Rolling was utilized as the ideal operation that can precisely tune the thickness of copper/brass laminate. This novel DWFR technique can easily tune the multilayered copper/brass blocks with controllable layer thickness (from ~250 to ~800 nm). The copper/brass interfaces were well-bonded, and the utilization efficiency of raw materials was very high (>95%).


Author(s):  
Yang Liu ◽  
Bingpeng Chen ◽  
Chenyu Wang ◽  
Hao Chen ◽  
Aobo Zhang ◽  
...  

Metal block augmentation, which is used for the treatment of tibial bone defects in total knee arthroplasty, with high stiffness will cause significant alteration in stress distribution, and its solid structure is not suitable for osseointegration. This study aimed to design a porous block to reduce weight, promote bone ingrowth, and improve its biomechanical performance. The metal block augmentation technique was applied to finite element models of tibial bone defects. Minimum compliance topology optimization subject to volume fraction combined with the porous architecture was adopted to redesign the block. Biomechanical changes compared with the original block were analyzed by finite element analysis. The stress distribution of the block and proximal tibia was recorded. The strain energy density of the proximal tibia was obtained. The newly designed block realized 40% weight reduction. The maximum stress in the optimized block decreased by 11.6% when compared with the solid one. The maximum stress of the proximal tibia in the optimized group increased by 18.6%. The stress of the anterior, medial, and posterior parts of the proximal medial tibia in the optimized group was significantly greater than that in the original group (all p < 0.05). The optimized block could effectively improve the biomechanical performance between the block and the bone. The presented method might provide a reference for the design of customized three-dimensional printed prostheses.


2021 ◽  
Vol 28 (2) ◽  
pp. 392-403
Author(s):  
P. Pellicioli ◽  
M. Donzelli ◽  
J. A. Davis ◽  
F. Estève ◽  
R. Hugtenburg ◽  
...  

Microbeam radiation therapy (MRT) is a developing radiotherapy, based on the use of beams only a few tens of micrometres wide, generated by synchrotron X-ray sources. The spatial fractionation of the homogeneous beam into an array of microbeams is possible using a multislit collimator (MSC), i.e. a machined metal block with regular apertures. Dosimetry in MRT is challenging and previous works still show differences between calculated and experimental dose profiles of 10–30%, which are not acceptable for a clinical implementation of treatment. The interaction of the X-rays with the MSC may contribute to the observed discrepancies; the present study therefore investigates the dose contribution due to radiation interaction with the MSC inner walls and radiation leakage of the MSC. Dose distributions inside a water-equivalent phantom were evaluated for different field sizes and three typical spectra used for MRT studies at the European Synchrotron Biomedical beamline ID17. Film dosimetry was utilized to determine the contribution of radiation interaction with the MSC inner walls; Monte Carlo simulations were implemented to calculate the radiation leakage contribution. Both factors turned out to be relevant for the dose deposition, especially for small fields. Photons interacting with the MSC walls may bring up to 16% more dose in the valley regions, between the microbeams. Depending on the chosen spectrum, the radiation leakage close to the phantom surface can contribute up to 50% of the valley dose for a 5 mm × 5 mm field. The current study underlines that a detailed characterization of the MSC must be performed systematically and accurate MRT dosimetry protocols must include the contribution of radiation leakage and radiation interaction with the MSC in order to avoid significant errors in the dose evaluation at the micrometric scale.


2021 ◽  
Vol 113 (1-2) ◽  
pp. 503-521
Author(s):  
Junyi Cui ◽  
Lei Yuan ◽  
Philip Commins ◽  
Fengyang He ◽  
Jun Wang ◽  
...  

2019 ◽  
Vol 9 (20) ◽  
pp. 4220 ◽  
Author(s):  
SimChul Yuk ◽  
WooRam An ◽  
BoKyung Hwang ◽  
TaeSoo Kim

This study develops a finite element analysis model to predict the ultimate strength of the base metal block shear fracture based on previous experimental results and compares the experimental results with the analysis results to verify the effectiveness of the analysis model. This study also analyzed additional variables of the welding direction and weld length on the applied load to investigate the structural behaviors and fracture conditions. In addition, predicted strength according to the analysis results were compared with those by the current design equations, and the equations proposed by previous researchers. As a result, the design formula by the current design equations, such as Korea Building Code (KBC)/American Institute of Steel Construction (AISC) and European Code (EC3), and the equations proposed by Oosterhof and Driver underestimated the base metal block shear strength of ferritic stainless steel by up to 42%. Equations suggested by Topkaya and Lee et al. for carbon steel and austenitic stainless steel welded connections provided more accurate strength predictions, while they did not reflect the difference of material properties. Therefore, this study proposed a modified strength equation for ferritic stainless steel welded connection with base metal block shear fracture considering the stress triaxiality effect of the welded connection and the material properties of ferritic stainless steel.


2019 ◽  
Vol 8 (3) ◽  
pp. 384 ◽  
Author(s):  
Kwan Kang ◽  
Trinh Tien ◽  
Myung Lee ◽  
Kwon-Yong Lee ◽  
Bongju Kim ◽  
...  

This study was performed to determine whether metal block augmentation is suitable for large uncontained bone defect via evaluations of differences in biomechanical characteristics among the configurations of metal block augmentations for medium or large uncontained bone defects in revision total knee arthroplasty (TKA). Three-dimensional finite element (FE) models of the proximal tibia with revision TKA were developed and analyzed considering the configurations of the metal block augmentations for medium and large uncontained bone defects. To identify differences in biomechanical characteristics according to the configurations of metal block augmentations, the stress transfer, strain distribution, and peak von Mises stresses (PVMSs) were assessed. Large and medium uncontained bone defects had similar ranges of strain below the critical bone-damage strain for the metal block augmentations, but the strain distribution characteristics differed in response to the metal block-augmentation configurations. PVMSs exceeding the yield strength of the bone cement for the single metal block-augmentation configurations were, on average, 1.4 times higher than those for double metal block-augmentation configurations for both medium and large uncontained bone defects. These findings suggest that metal block augmentation may be suitable for large uncontained bone defects (≤20 mm), compared with the results obtained for metal block augmentation used in medium uncontained bone defects (≤10 mm). If possible, double metal block augmentation is recommended for both medium and large uncontained bone defects rather than single metal block augmentation. It is also recommended that the metal block augmentation should be customized to meet the contact characteristics with the cortical bone, thereby ensuring better stress transfer and reducing the risk of the bone resorption due to stress shielding and bone-cement failure.


Science ◽  
2019 ◽  
Vol 363 (6426) ◽  
pp. 484-488 ◽  
Author(s):  
James K. McCusker

Transition metal–based chromophores play a central role in a variety of light-enabled chemical processes ranging from artificial solar energy conversion to photoredox catalysis. The most commonly used compounds include elements from the second and third transition series (e.g., ruthenium and iridium), but their Earth-abundant first-row analogs fail to engage in photoinduced electron transfer chemistry despite having virtually identical absorptive properties. This disparate behavior stems from fundamental differences in the nature of 3d versus 4d and 5d orbitals, resulting in an inversion in the compounds’ excited-state electronic structure and undermining the ability of compounds with first-row elements to engage in photoinduced electron transfer. This Review will survey the key experimental observations establishing this difference in behavior, discuss the underlying reasons for this phenomenon, and briefly summarize efforts that are currently under way to alter this paradigm and open the door to new opportunities for using Earth-abundant materials for photoinduced electron transfer chemistries.


2018 ◽  
Vol 30 (3) ◽  
pp. 32-39
Author(s):  
Hiyam J Al-Zubaidi ◽  
Akram F Alhuwaizi

Background/: Buccal tubes are orthodontic attachments used on the posterior teeth instead of bands, so it is important to focus on the effect of their properties on orthodontic treatment. The aims of the present in vitro study are to evaluate and compare the buccal tube front and back openings dimensions and the torsional play angle of six different brands. Materials and Methods: The samples consisted of Single bondable, non-convertible first molar buccal tubes from six brands supplied from six companies (Dentaurum, Forestadent, Ormco, 3M, American Orthodontic, A-Star). Regarding tube opening dimension, ten buccal tubes of each brand were examined by an optical microscope. Each tube was fixed during examination using synthetic mud and oriented for observation of the front and back slot openings. A picture was taken for both tube openings and the result appeared on the computer's screen where width and height measurements were made. While regarding torsional play angle, ten buccal tubes of each brand were used. Each tube was fixed on a metal block attached to a surveyor base. Then an L-shaped wire was inserted inside the front opening of the tube. Two photographs were taken, one with the wire in free fall position and the other with the wire elevated by a 10g weight with the same angle of shooting as the first photograph. Later, the two images were superimposed in Adobe Photoshop program, and an electronic MB-ruler Software was used to calculate the angle which represents the torsional play within each tube. The data were then statistically analyzed using ANOVA and LSD tests. Results: There are marked differences between measured tube dimensions and the manufacturer stated dimensions with the front tube openings being generally larger than the back opening dimensions. Furthermore, the torsional play angle was highest in A-Star and smallest in Ormco's tubes. This angle was significantly correlated to the height of the tube front opening. Conclusion: It can be concluded that tube dimension varies among different companies and effect greatly torsional play angle.


Sign in / Sign up

Export Citation Format

Share Document