Post-treatment with glycyrrhizin can attenuate hepatic mitochondrial damage induced by acetaminophen in mice

2020 ◽  
pp. 153537022097782
Author(s):  
Xue-Liang Dang ◽  
Long-Fei Yang ◽  
Lei Shi ◽  
Long-Fei Li ◽  
Ping He ◽  
...  

Overdose of acetaminophen (APAP) is responsible for the most cases of acute liver failure worldwide. Hepatic mitochondrial damage mediated by neuronal nitric oxide synthase- (nNOS) induced liver protein tyrosine nitration plays a critical role in the pathophysiology of APAP hepatotoxicity. It has been reported that pre-treatment or co-treatment with glycyrrhizin can protect against hepatotoxicity through prevention of hepatocellular apoptosis. However, the majority of APAP-induced acute liver failure cases are people intentionally taking the drug to commit suicide. Any preventive treatment is of little value in practice. In addition, the hepatocellular damage induced by APAP is considered to be oncotic necrosis rather than apoptosis. In the present study, our aim is to investigate if glycyrrhizin can be used therapeutically and the underlying mechanisms of APAP hepatotoxicity protection. Hepatic damage was induced by 300 mg/kg APAP in balb/c mice, followed with administration of 40, 80, or 160 mg/kg glycyrrhizin 90 min later. Mice were euthanized and harvested at 6 h post-APAP. Compared with model controls, glycyrrhizin post-treatment attenuated hepatic mitochondrial and hepatocellular damages, as indicated by decreased serum glutamate dehydrogenase, alanine aminotransferase, and aspartate aminotransferase activities as well as ameliorated mitochondrial swollen, distortion, and hepatocellular necrosis. Notably, 80 mg/kg glycyrrhizin inhibited hepatic nNOS activity and its mRNA and protein expression levels by 16.9, 14.9, and 28.3%, respectively. These results were consistent with the decreased liver nitric oxide content and liver protein tyrosine nitration indicated by 3-nitrotyrosine staining. Moreover, glycyrrhizin did not affect the APAP metabolic activation, and the survival rate of ALF mice was increased by glycyrrhizin. The present study indicates that post-treatment with glycyrrhizin can dose-dependently attenuate hepatic mitochondrial damage and inhibit the up-regulation of hepatic nNOS induced by APAP. Glycyrrhizin shows promise as drug for the treatment of APAP hepatotoxicity.

Endocrinology ◽  
2004 ◽  
Vol 145 (7) ◽  
pp. 3413-3423 ◽  
Author(s):  
Ted H. Elsasser ◽  
Stanislaw Kahl ◽  
Carol MacLeod ◽  
Benjamin Nicholson ◽  
James L. Sartin ◽  
...  

Abstract The present study defined the effects of GH administration on components of the nitric oxide (NO)-generating cascade to account for observed increases in NO production and protein nitration after an immune challenge. Calves were assigned to groups with or without GH treatment (100 μg GH/kg body weight or placebo im, daily for 12 d) and with or without low-level endotoxin [lipopolysaccharide (LPS), 2.5 μg/kg, or placebo, iv]. Plasma was obtained for estimation of NO changes as [NO2− + NO3−] (NOx). Transcutaneous liver biopsies were collected for measurement of protein tyrosine nitration, cationic amino acid transporter (CAT)-2 mRNA transporter, and constitutive NO synthase (cNOS), inducible NOS (iNOS), and arginase activity. Liver protein nitration increased more than 10-fold 24 h after LPS and an additional 2-fold in animals treated with GH before LPS. GH increased plasma NOx after LPS to levels 27% greater than those measured in non-GH-treated calves. LPS increased CAT-2 mRNA after LPS; GH was associated with a 24% reduction in CAT-2 mRNA content at the peak time response. cNOS activity was 3-fold greater than iNOS after LPS. NOS activities were increased 140% (cNOS) at 3 h and 169% (iNOS) at 6 h, respectively, after LPS; GH treatment increased cNOS activity and the phosphorylation of endothelial NOS after LPS more than 2-fold over that measured in non-GH-treated calves. The data suggest that an increased production of nitrated protein develops in the liver during low-level, proinflammatory stress, and nitration is increased by GH administration through a direct effect on the competing activities of NOS and arginase, modulatable critical control points in the proinflammatory cascade.


2008 ◽  
Vol 22 (9) ◽  
pp. 3207-3215 ◽  
Author(s):  
Tania R. Lizarbe ◽  
Concepción García‐Rama ◽  
Carlos Tarín ◽  
Marta Saura ◽  
Enrique Calvo ◽  
...  

2007 ◽  
Vol 292 (2) ◽  
pp. H954-H962 ◽  
Author(s):  
Baohua Yang ◽  
Victor Rizzo

A major source of reactive oxygen species (ROS) in endothelial cells is the NADPH oxidase enzyme complex. The selective distributions of any enzyme within cells have important implications in regulating enzyme effectiveness through facilitation of access to local substrates and/or product targets. Because membrane rafts provide a spatially preferable environment for a variety of enzyme systems, we sought to determine whether NADPH oxidase is present and functional in this plasma membrane compartment in endothelial cells. We found that, in resting endothelial cells, NADPH oxidase subunits were preassembled and the enzyme functional in membrane rafts, specifically in caveolae. Stimulation with TNF-α induced additional recruitment of the p47phox regulatory subunit to raft-localized NADPH oxidase and enhanced ROS production within raft domains. TNF-α also induced nitric oxide production through activation of endothelial nitric oxide synthase (eNOS) present in the same membrane compartment. The dual activation of superoxide and nitric oxide-generating systems provided a spatially favorable environment for nitration of tyrosine-containing proteins localized to rafts. Perturbation of membrane raft structural integrity with cholesterol-sequestering compounds caused the delocalization of NADPH oxidase subunits and eNOS from the rafts and inhibited TNF-α-induced ROS production and protein tyrosine nitration. Together, these data provide evidence that membrane rafts and caveolae play a role in the spatial regulation of NADPH oxidase and subsequent ROS/reactive nitrogen species in endothelial cells.


Sign in / Sign up

Export Citation Format

Share Document