A Novel Model of Tobacco Smoke–Mediated Aortic Injury

2021 ◽  
pp. 153857442110630
Author(s):  
Amir F. Azarbal ◽  
Tana Repella ◽  
Eric Carlson ◽  
Elise C. Manalo ◽  
Braden Palanuk ◽  
...  

Objective Tobacco smoke exposure is a major risk factor for aortic aneurysm development. However, the initial aortic response to tobacco smoke, preceding aneurysm formation, is not well understood. We sought to create a model to determine the effect of solubilized tobacco smoke (STS) on the thoracic and abdominal aorta of mice as well as on cultured human aortic smooth muscle cells (HASMCs). Methods Tobacco smoke was solubilized and delivered to mice via implanted osmotic minipumps. Twenty male C57BL/6 mice received STS or vehicle infusion. The descending thoracic, suprarenal abdominal, and infrarenal abdominal segments of the aorta were assessed for elastic lamellar damage, smooth muscle cell phenotype, and infiltration of inflammatory cells. Cultured HASMCs grown in media containing STS were compared to cells grown in standard media in order to verify our in vivo findings. Results Tobacco smoke solution caused significantly more breaks in the elastic lamellae of the thoracic and abdominal aorta compared to control solution ( P< .0001) without inciting an inflammatory infiltrate. Elastin breaks occurred more frequently in the abdominal aorta than the thoracic aorta ( P < .01). Exposure to STS-induced aortic microdissections and downregulation of α-smooth muscle actin (α-SMA) by vascular smooth muscle cells (VSMCs). Treatment of cultured HASMCs with STS confirmed the decrease in α-SMA expression. Conclusion Delivery of STS via osmotic minipumps appears to be a promising model for investigating the early aortic response to tobacco smoke exposure. The initial effect of tobacco smoke exposure on the aorta is elastic lamellar damage and downregulation of (α-SMA) expression by VSMCs. Elastic lamellar damage occurs more frequently in the abdominal aorta than the thoracic aorta and does not seem to be mediated by the presence of macrophages or other inflammatory cells.

2017 ◽  
Vol 65 (6) ◽  
pp. 197S-198S
Author(s):  
Tana L. Repella ◽  
Elise Manalo ◽  
Gregory Landry ◽  
Cherrie Abraham ◽  
Lynn Y. Sakai ◽  
...  

2009 ◽  
Vol 297 (2) ◽  
pp. L380-L387 ◽  
Author(s):  
Dae Jin Song ◽  
Myung Goo Min ◽  
Marina Miller ◽  
Jae Youn Cho ◽  
David H. Broide

The ability of corticosteroids to reduce airway inflammation and improve lung function is significantly reduced in asthmatics who are tobacco smokers compared with asthmatics who are nonsmokers. As not only high levels of tobacco smoke exposure in active smokers, but also significantly lower levels of tobacco smoke exposure from passive environmental tobacco smoke (ETS) exposure in nonsmokers can increase both asthma symptoms and the frequency of asthma exacerbations, we utilized a mouse model to determine whether corticosteroids can reduce levels of airway inflammation, airway remodeling, and airway hyperreactivity in mice exposed to the combination of chronic ETS and ovalbumin (OVA) allergen. Chronic ETS exposure alone did not induce increases in eosinophilic airway inflammation, airway remodeling, or airway hyperreactivity. Mice exposed to chronic OVA allergen had significantly increased levels of peribronchial fibrosis, increased thickening of the smooth muscle layer, increased mucus, and increased airway hyperreactivity, which was significantly enhanced by coexposure to the combination of chronic ETS and chronic OVA allergen. Administration of corticosteroids to mice exposed to chronic ETS and OVA allergen significantly reduced levels of eosinophilic airway inflammation, mucus production, peribronchial smooth muscle thickness, airway hyperreactivity, and the number of peribronchial TGF-β1+ cells. Overall, this study demonstrates that corticosteroids can significantly reduce levels of eosinophilic inflammation, mucus expression, airway remodeling, and airway hyperreactivity in chronic ETS-exposed mice challenged with allergen.


Sign in / Sign up

Export Citation Format

Share Document