Going with the Flow - Computer Visualization of Road Traffic Information

Author(s):  
John Murray ◽  
Yili Liu

Advanced road traffic management systems provide numerous opportunities for the application of sophisticated computer visualization concepts. The operating staff in a traffic control center are required to assimilate large quantities of incoming data in order to determine the real state of traffic flow and congestion. Part of the incoming data relates to vehicular speed and density, and is often not subjected to sufficient pre-processing before presentation in tabular form on a video display terminal (VDT). Improvements in the format of the tabular information are therefore worthy of investigation. A traffic control simulation experiment was conducted to examine how human subjects extract information from VDT data presented in several different formats. Subjects were asked to respond to exceptional values which occurred randomly in tabular columns of frequently changing data. Their accuracy and reaction time were measured for data columns which were sorted or unsorted, and for data which was presented either numerically or color-coded. Analysis of the results suggests that both sorting and color-coding are significant in reducing response time, and that color-coding is appreciably more effective in this regard.

Author(s):  
Solomon Adegbenro Akinboro ◽  
Johnson A Adeyiga ◽  
Adebayo Omotosho ◽  
Akinwale O Akinwumi

<p><strong>Vehicular traffic is continuously increasing around the world, especially in urban areas, and the resulting congestion ha</strong><strong>s</strong><strong> be</strong><strong>come</strong><strong> a major concern to automobile users. The popular static electric traffic light controlling system can no longer sufficiently manage the traffic volume in large cities where real time traffic control is paramount to deciding best route. The proposed mobile traffic management system provides users with traffic information on congested roads using weighted sensors. A prototype of the system was implemented using Java SE Development Kit 8 and Google map. The model </strong><strong>was</strong><strong> simulated and the performance was </strong><strong>assessed</strong><strong> using response time, delay and throughput. Results showed that</strong><strong>,</strong><strong> mobile devices are capable of assisting road users’ in faster decision making by providing real-time traffic information and recommending alternative routes.</strong></p>


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3658
Author(s):  
Qingfeng Zhu ◽  
Sai Ji ◽  
Jian Shen ◽  
Yongjun Ren

With the advanced development of the intelligent transportation system, vehicular ad hoc networks have been observed as an excellent technology for the development of intelligent traffic management in smart cities. Recently, researchers and industries have paid great attention to the smart road-tolling system. However, it is still a challenging task to ensure geographical location privacy of vehicles and prevent improper behavior of drivers at the same time. In this paper, a reliable road-tolling system with trustworthiness evaluation is proposed, which guarantees that vehicle location privacy is secure and prevents malicious vehicles from tolling violations at the same time. Vehicle route privacy information is encrypted and uploaded to nearby roadside units, which then forward it to the traffic control center for tolling. The traffic control center can compare data collected by roadside units and video surveillance cameras to analyze whether malicious vehicles have behaved incorrectly. Moreover, a trustworthiness evaluation is applied to comprehensively evaluate the multiple attributes of the vehicle to prevent improper behavior. Finally, security analysis and experimental simulation results show that the proposed scheme has better robustness compared with existing approaches.


Author(s):  
John Murray ◽  
Yili Liu

The identification of problems from numeric traffic measurements is an important part of control center activities in ATMS (Advanced Traffic Management Systems). However, an information modeling process that relies solely upon ‘traditional’ quantitative data analysis does not reflect faithfully the actual methods used by human operators. In addition to common-sense knowledge and specific contextual information, operators also use various heuristics and rules-of-thumb to supplement the numerical analysis. This paper describes an experiment to examine the effectiveness of an expert system that integrates quantitative and qualitative traffic information using a human-centered knowledge system design. The system's performance was investigated using a data suite of real traffic scenarios; the statistically significant results showed that the integrated process had superior performance compared to the ‘traditional’ quantitative analysis running alone.


Transfers ◽  
2018 ◽  
Vol 8 (2) ◽  
pp. 67-86 ◽  
Author(s):  
Marith Dieker

With the rise of privatized automobility and the increase of traffic jams, new sociotechnical systems have emerged that aim at traffic control. Radio traffic information has been a key element in these systems. Through a qualitative analysis of historical radio broadcasts of the largest Dutch news station between 1960 and 2000, this article explores the changing format and content of traffic information updates. I will show how the rather formal, detailed, and paternalistic narratives of the traffic reports in the 1960s gave way to more informal, witty, yet flow-controlling traffic information discourse in later decades. I will explain the dynamics involved by drawing on mobility and media studies and by developing two distinct notions of flow, one of which builds conceptually on Raymond Williams’s work on mobile privatization, the other is grounded in the field of traffic management. In so doing, this article aims to contribute to a better understanding of the role of public radio broadcasts in our world of privatized automobility.


Author(s):  
Mamata Rath ◽  
Bibudhendu Pati

This article describes how soft computing techniques are tolerant of imprecision, intended on approximation, focus on uncertainty and are based on partial truth. Current real-world problems pertaining to congested traffic is pervasively imprecise and therefore design of smart traffic control system is a challenging issue. Due to the increasing rate of vehicles at traffic points in smart cities, it creates unexpected delays during transit, chances of accidents are higher, unnecessary fuel consumption is an issue, and unhygienic environment due to pollution also degrades the health condition of general people in a normal city scenario. To avoid such problems many smart cities are currently implementing improved traffic control systems that work on the principle of traffic automation to prevent these issues. The basic challenge lies in the usage of real-time analytics performed with online traffic information and correctly applying it to some traffic flow. In this research article, an enhanced traffic management system called SCICS (Soft Computing based Intelligent Communication System) has been proposed which uses swarm intelligence as a soft computing technique with intelligent communication between smart vehicles and traffic points using the vehicle to infrastructure (V2I) concept of VANET. It uses an improved route diversion mechanism with implemented logic in nanorobots. Under a vehicular ad-hoc network (VANET) scenario, the communication between intelligent vehicles and infrastructure points takes place through nanorobots in a collaborative way. Simulation carried out using Ns2 simulator shows encouraging results in terms of better performance to control the traffic.


2021 ◽  
Vol 17 (2) ◽  
pp. 46-71
Author(s):  
Manipriya Sankaranarayanan ◽  
Mala C. ◽  
Samson Mathew

Any road traffic management application of intelligent transportation systems (ITS) requires traffic characteristics data such as vehicle density, speed, etc. This paper proposes a robust and novel vehicle detection framework known as multi-layer continuous virtual loop (MCVL) that uses computer vision techniques on road traffic video to estimate traffic characteristics. Estimations of traffic data such as speed, area occupancy and an exclusive spatial feature named as corner detail value (CDV) acquired using MCVL are proposed. Further, the estimation of traffic congestion (TraCo) level using these parameters is also presented. The performances of the entire framework and TraCo estimation are evaluated using several benchmark traffic video datasets and the results are presented. The results show that the improved accuracy in vehicle detection process using MCVL subsequently improves the precision of TraCo estimation. This also means that the proposed framework is well suited to applications that need traffic characteristics to update their traffic information system in real time.


2011 ◽  
Vol 105-107 ◽  
pp. 2250-2254
Author(s):  
Xin Sheng Yao ◽  
Jian Hua Qu ◽  
Ji Lai Ying

This paper describes a prototype system based on floating taxi for traffic condition identification. The system consists of in-vehicle hardware units placed in floating taxi and backstage database that process all data send from the report units. The communication between the taxi and the database center is based on a very compact wireless communication protocol. The taxi sample size is decided by the variables: section traffic information update cycle, data sampling interval, section covering ratio. The test in a road section showed that the system is operational which could offer useful reference for urban traffic management and resident trips decision.


Author(s):  
M. Ephimia Morphew ◽  
Christopher D. Wickens

Arising from the need to employ innovative solutions to safely and efficiently maintain air traffic separation in increasingly denser skyways, the concept of Free Flight involves shifting some air traffic management responsibilities from air traffic control specialists on the ground, to pilots in the cockpit. Such a shift in traffic management responsibilities will be critically dependent upon the development of displays to provide traffic and hazard information to pilots in the cockpit (Wickens, Carbonari, Merwin, Morphew, & O'Brien (1997; Battiste (in progress); Johnson, Battiste, Delzell, Holland, Belcher, & Jordan, 1997). This research examined the effect of different information-varying display aids (predictors and threat vectors) for in-cockpit traffic displays, on pilot performance, workload, attentional demands, and flight safety. Fifteen pilots flew a series of traffic avoidance scenarios in a Free Flight simulation designed to assess the effects of different levels of traffic display information on these pilot variables. Three, 2D-coplanar prototype displays were compared which differed in the level of traffic information provided. Analysis of the data revealed that the traffic display with the most predictive information supported increased safety and decreased workload, without appreciable decrements in flight performance or efficiency.


2020 ◽  
Vol 06 (1) ◽  
pp. 12-21
Author(s):  
Saif Ur Rehman ◽  
Moiz Ahmad ◽  
Asif Nawaz ◽  
Tariq Ali

Introduction: Recognition of Vehicle License Number Plates (VLNP) is an important task. It is valuable in numerous applications, such as entrance admission, security, parking control, road traffic control, and speed control. An ANPR (Automatic Number Plate Recognition) is a system in which the image of the vehicle is captured through high definition cameras. The image is then used to detect vehicles of any type (car, van, bus, truck, and bike, etc.), its’ color (white, black, blue, etc.), and its’ model (Toyota Corolla, Honda Civic etc.). Furthermore, this image is processed using segmentation and OCR techniques to get the vehicle registration number in form of characters. Once the required information is extracted from VLNP, this information is sent to the control center for further processing. Aim: ANPR is a challenging problem, especially when the number plates have varying sizes, the number of lines, fonts, background diversity, etc. Different ANPR systems have been suggested for different countries, including Iran, Malaysia, and France. However, only a limited work exists for Pakistan vehicles. Therefore, in this study, we aim to propose a novel ANPR framework for Pakistan VLNP recognition. Methods: The proposed ANPR system functions in three different steps: (i) - Number Plate Localization (NPL); (ii)- Character Segmentation (CS); and (iii)- Optical Character Recognition (OCR), involving template-matching mechanism. The proposed ANPR approach scans the number plate and instantly checks against database records of vehicles of interest. It can further extract the real=time information of driver and vehicle, for instance, license of the driver and token taxes of vehicles are paid or not, etc. Results: Finally, the proposed ANPR system has been evaluated on several real-time images from various formats of number plates practiced in Pakistan territory. In addition to this, the proposed ANPR system has been compared with the existing ANPR systems proposed specifically for Pakistani licensed number plates. Conclusion: The proposed ANPR Model has both time and money-saving profit for law enforcement agencies and private organizations for improving homeland security. There is a need to expand the types of vehicles that can be detected: trucks, buses, scooters, bikes. This technology can be further improved to detect the crashed vehicle’s number plate in an accident and alert the closest hospital and police station about the accident, thus saving lives.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1204
Author(s):  
Elżbieta Macioszek ◽  
Damian Iwanowicz

In smart cities, it is expected that transport, communication as well as the movement of people and goods will take place in the shortest possible time while maintaining a high level of safety. In recent years, due to the significant increase in the number of passengers and vehicles on the road and the capacity limitations of transport networks, it has become necessary to use new technologies for intelligent control and traffic management. Intelligent transport systems use advanced technologies in the field of data gathering, information processing, and traffic control to meet current transport needs. To be able to effectively control and manage road traffic, it is necessary to have reliable mathematical models that allow for a faithful representation of the real traffic conditions. Models of this type are usually the basis of complex algorithms used in practice in road traffic control. The application of appropriate models reflecting the behavior of road users contributes to the reduction of congestion, the vehicles travel time on the transport network, fuel consumption and the emissions, which in turn support broadly understood energy savings. The article proposes a model that allows for the estimation of the maximum queue size at the signal-controlled intersection approach (so-called: maximum back-of-queue). This model takes into account the most important traffic characteristics of the vehicles forming this queue. The verification allowed for the conclusion that the proposed model is characterized by high compliance with the actual traffic and road conditions at the intersections with signal controllers located in built-up areas in Poland. The obtained compliance confirms the possibility of using the model for practical applications in calculating the maximum back-of-queue at signal-controlled intersections located in built-up areas in Poland.


Sign in / Sign up

Export Citation Format

Share Document