scholarly journals A Back-of-Queue Model of a Signal-Controlled Intersection Approach Developed Based on Analysis of Vehicle Driver Behavior

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1204
Author(s):  
Elżbieta Macioszek ◽  
Damian Iwanowicz

In smart cities, it is expected that transport, communication as well as the movement of people and goods will take place in the shortest possible time while maintaining a high level of safety. In recent years, due to the significant increase in the number of passengers and vehicles on the road and the capacity limitations of transport networks, it has become necessary to use new technologies for intelligent control and traffic management. Intelligent transport systems use advanced technologies in the field of data gathering, information processing, and traffic control to meet current transport needs. To be able to effectively control and manage road traffic, it is necessary to have reliable mathematical models that allow for a faithful representation of the real traffic conditions. Models of this type are usually the basis of complex algorithms used in practice in road traffic control. The application of appropriate models reflecting the behavior of road users contributes to the reduction of congestion, the vehicles travel time on the transport network, fuel consumption and the emissions, which in turn support broadly understood energy savings. The article proposes a model that allows for the estimation of the maximum queue size at the signal-controlled intersection approach (so-called: maximum back-of-queue). This model takes into account the most important traffic characteristics of the vehicles forming this queue. The verification allowed for the conclusion that the proposed model is characterized by high compliance with the actual traffic and road conditions at the intersections with signal controllers located in built-up areas in Poland. The obtained compliance confirms the possibility of using the model for practical applications in calculating the maximum back-of-queue at signal-controlled intersections located in built-up areas in Poland.

Author(s):  
Mohammed Mouhcine Maaroufi ◽  
Laila Stour ◽  
Ali Agoumi

Managing mobility, both of people and goods, in cities is a thorny issue. The travel needs of urban populations are increasing and put pressure on transport infrastructure. The Moroccan cities are no exception and will struggle, in the short term, to respond to the challenges of the acceleration of the phenomenon of urbanization and the increase in demand for mobility. This will inevitably prevent them from turning into smart cities. The term smart certainly alludes to better use of technologies, but smart mobility is also defined as “a set of coordinated actions intended to improve the efficiency, effectiveness and environmental sustainability of cities” [1]. The term mobility highlights the preponderance of humans over infrastructure and vehicles. Faced with traffic congestion, the solutions currently adopted which consist of fitting out and widening the infrastructures, only encourage more trips and report the problem with more critical consequences. It is true that beyond a certain density of traffic, even Intelligent Transport Systems (ITS) are not useful. The concept of dynamic lane management or Advanced Traffic Management (ATM) opens up new perspectives. Its objective is to manage and optimize road traffic in a variable manner, in space and in time. This article is a summary of the development of a road infrastructure dedicated to Heavy Goods Vehicles (HGV), the first of its kind in Morocco. It aims to avoid the discomfort caused by trucks in the urban road network of the city of Casablanca. This research work is an opportunity to reflect on the introduction of ITS and ATM to ensure optimal use of existing infrastructure before embarking on heavy and irreversible infrastructure projects.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3658
Author(s):  
Qingfeng Zhu ◽  
Sai Ji ◽  
Jian Shen ◽  
Yongjun Ren

With the advanced development of the intelligent transportation system, vehicular ad hoc networks have been observed as an excellent technology for the development of intelligent traffic management in smart cities. Recently, researchers and industries have paid great attention to the smart road-tolling system. However, it is still a challenging task to ensure geographical location privacy of vehicles and prevent improper behavior of drivers at the same time. In this paper, a reliable road-tolling system with trustworthiness evaluation is proposed, which guarantees that vehicle location privacy is secure and prevents malicious vehicles from tolling violations at the same time. Vehicle route privacy information is encrypted and uploaded to nearby roadside units, which then forward it to the traffic control center for tolling. The traffic control center can compare data collected by roadside units and video surveillance cameras to analyze whether malicious vehicles have behaved incorrectly. Moreover, a trustworthiness evaluation is applied to comprehensively evaluate the multiple attributes of the vehicle to prevent improper behavior. Finally, security analysis and experimental simulation results show that the proposed scheme has better robustness compared with existing approaches.


2021 ◽  
Vol 13 (12) ◽  
pp. 2329
Author(s):  
Elżbieta Macioszek ◽  
Agata Kurek

Continuous, automatic measurements of road traffic volume allow the obtaining of information on daily, weekly or seasonal fluctuations in road traffic volume. They are the basis for calculating the annual average daily traffic volume, obtaining information about the relevant traffic volume, or calculating indicators for converting traffic volume from short-term measurements to average daily traffic volume. The covid-19 pandemic has contributed to extensive social and economic anomalies worldwide. In addition to the health consequences, the impact on travel behavior on the transport network was also sudden, extensive, and unpredictable. Changes in the transport behavior resulted in different values of traffic volume on the road and street network than before. The article presents road traffic volume analysis in the city before and during the restrictions related to covid-19. Selected traffic characteristics were compared for 2019 and 2020. This analysis made it possible to characterize the daily, weekly and annual variability of traffic volume in 2019 and 2020. Moreover, the article attempts to estimate daily traffic patterns at particular stages of the pandemic. These types of patterns were also constructed for the weeks in 2019 corresponding to these stages of the pandemic. Daily traffic volume distributions in 2020 were compared with the corresponding ones in 2019. The obtained results may be useful in terms of planning operational and strategic activities in the field of traffic management in the city and management in subsequent stages of a pandemic or subsequent pandemics.


2017 ◽  
Vol 18 (1) ◽  
pp. 25-33 ◽  
Author(s):  
Jamal Raiyn

Abstract This paper introduces a new scheme for road traffic management in smart cities, aimed at reducing road traffic congestion. The scheme is based on a combination of searching, updating, and allocation techniques (SUA). An SUA approach is proposed to reduce the processing time for forecasting the conditions of all road sections in real-time, which is typically considerable and complex. It searches for the shortest route based on historical observations, then computes travel time forecasts based on vehicular location in real-time. Using updated information, which includes travel time forecasts and accident forecasts, the vehicle is allocated the appropriate section. The novelty of the SUA scheme lies in its updating of vehicles in every time to reduce traffic congestion. Furthermore, the SUA approach supports autonomy and management by self-regulation, which recommends its use in smart cities that support internet of things (IoT) technologies.


2022 ◽  
Vol 24 (3) ◽  
pp. 0-0

This paper introduces a new approach of hybrid meta-heuristics based optimization technique for decreasing the computation time of the shortest paths algorithm. The problem of finding the shortest paths is a combinatorial optimization problem which has been well studied from various fields. The number of vehicles on the road has increased incredibly. Therefore, traffic management has become a major problem. We study the traffic network in large scale routing problems as a field of application. The meta-heuristic we propose introduces new hybrid genetic algorithm named IOGA. The problem consists of finding the k optimal paths that minimizes a metric such as distance, time, etc. Testing was performed using an exact algorithm and meta-heuristic algorithm on random generated network instances. Experimental analyses demonstrate the efficiency of our proposed approach in terms of runtime and quality of the result. Empirical results obtained show that the proposed algorithm outperforms some of the existing technique in term of the optimal solution in every generation.


Author(s):  
Solomon Adegbenro Akinboro ◽  
Johnson A Adeyiga ◽  
Adebayo Omotosho ◽  
Akinwale O Akinwumi

<p><strong>Vehicular traffic is continuously increasing around the world, especially in urban areas, and the resulting congestion ha</strong><strong>s</strong><strong> be</strong><strong>come</strong><strong> a major concern to automobile users. The popular static electric traffic light controlling system can no longer sufficiently manage the traffic volume in large cities where real time traffic control is paramount to deciding best route. The proposed mobile traffic management system provides users with traffic information on congested roads using weighted sensors. A prototype of the system was implemented using Java SE Development Kit 8 and Google map. The model </strong><strong>was</strong><strong> simulated and the performance was </strong><strong>assessed</strong><strong> using response time, delay and throughput. Results showed that</strong><strong>,</strong><strong> mobile devices are capable of assisting road users’ in faster decision making by providing real-time traffic information and recommending alternative routes.</strong></p>


Author(s):  
Tomislav Petrović ◽  
Miloš Milosavljević ◽  
Milan Božović ◽  
Danislav Drašković ◽  
Milija Radović

The application of intelligent transport systems (hereinafter ITSs) on roads enables continuous monitoring of road users during a whole year with the aim to collect good-quality data based on which the more complex analyses could be done, such as monitoring of certain traffic safety indicators. Automatic traffic counters are one of the most commonly implemented ITSs for collecting traffic flow parameters that are relevant for traffic management on state roads in Republic of Serbia. This paper presents one of the possible ways to collect, analyze and present data on road users’ speeds using automatic traffic counters, where certain traffic safety indicators are analyzed in terms of road users’ compliance with the speed limit on the road section from Mali Pozarevac to Kragujevac. Based on the analyses of data downloaded from automatic traffic counters, it is observed that an extremely high percentage of vehicles drive at speed higher than the speed limit, indicating clearly to higher traffic accident risk, as well as to the need for a tendency to implement speed management on roads using ITS in the forthcoming period.


Author(s):  
S. Gristina ◽  
C. Ellul ◽  
A. Scianna

Road transport has always played an important role in a country’s growth and, in order to manage road networks and ensure a high standard of road performance (e.g. durability, efficiency and safety), both public and private road inventories have been implemented using databases and Geographical Information Systems. They enable registering and managing significant amounts of different road information, but to date do not focus on 3D road information, data integration and interoperability. In an increasingly complex 3D urban environment, and in the age of smart cities, however, applications including intelligent transport systems, mobility and traffic management, road maintenance and safety require digital data infrastructures to manage road data: thus new inventories based on integrated 3D road models (queryable, updateable and shareable on line) are required. This paper outlines the first step towards the implementation of 3D GIS-based road inventories. Focusing on the case study of the “Road Cadastre” (the Italian road inventory as established by law), it investigates current limitations and required improvements, and also compares the required data structure imposed by cadastral legislation with real road users’ needs. The study aims to: a) determine whether 3D GIS would improve road cadastre (for better management of data through the complete life-cycle infrastructure projects); b) define a conceptual model for a 3D road cadastre for Italy (whose general principles may be extended also to other countries).


Author(s):  
Elizabeth Frank ◽  
Gloria Aznar Fernández-Montesinos

With a rapidly growing world population, urban populations are estimated to increase significantly over the next decades. This trend is reason for concern since the planet's resources are limited, and climate change is inherent. This chapter focusses on the question about whether new technologies employed in smart cities can be the answer to current and future needs of a city population. Cutting-edge technological advances are reshaping our ecosystem; transforming society, living, and work environments; transport systems; energy grids; healthcare; communications; businesses; and education. How can cities respond to the multitude of challenges by employing technology and at the same time ensure the public well-being, improve the quality of life of city inhabitants, and make sure that the human is still at the center of decisions?


2009 ◽  
Vol 62 (4) ◽  
pp. 555-570 ◽  
Author(s):  
Peter Brooker

It is now widely recognised that a paradigm shift in air traffic control concepts is needed. This requires state-of-the-art innovative technologies, making much better use of the information in the air traffic management (ATM) system. These paradigm shifts go under the names of NextGen in the USA and SESAR in Europe, which inter alia will make dramatic changes to the nature of airport operations. A vital part of moving from an existing system to a new paradigm is the operational implications of the transition process. There would be business incentives for early aircraft fitment, it is generally safer to introduce new technologies gradually, and researchers are already proposing potential transition steps to the new system. Simple queuing theory models are used to establish rough quantitative estimates of the impact of the transition to a more efficient time-based – four-dimensional (4D) – navigational and ATM system. Such models are approximate, but they do offer insight into the broad implications of system change and its significant features. 4D-equipped aircraft in essence have a contract with the airport runway – they would be required to turn up at a very precise time – and, in return, they would get priority over any other aircraft waiting for use of the runway. The main operational feature examined here is the queuing delays affecting non-4D-equipped arrivals. These get a reasonable service if the proportion of 4D-equipped aircraft is low, but this can deteriorate markedly for high proportions, and be economically unviable. Preventative measures would be to limit the additional growth of 4D-equipped flights and/or to modify their contracts to provide sufficient space for the non-4D-equipped flights to operate without excessive delays. There is a potential for non-Poisson models, for which there is little in the literature, and for more complex models, e.g. grouping a succession of 4D-equipped aircraft as a batch.


Sign in / Sign up

Export Citation Format

Share Document