scholarly journals Relay participated–new-type building energy management system: An energy-efficient routing scheme for wireless sensor network–based building energy management systems

2017 ◽  
Vol 13 (1) ◽  
pp. 155014771668361 ◽  
Author(s):  
Kewang Zhang ◽  
Qizhao Wu ◽  
Xin Li

With the development of wireless sensor networks, many building energy management systems are getting to adopt wireless sensor network as their communication infrastructure. However, the existing wireless sensor network protocols cannot satisfy the energy-saving demand of building energy management systems. Considering the characteristics of the building energy management system wireless sensor networks, a novel energy-efficient routing scheme is proposed called relay participated–new-type building energy management system. Nodes in the building energy management system wireless sensor networks are divided into two types: energy-limited nodes (battery powered) and energy-unlimited nodes (main powered, solar charger, or heat energy powered). Relay participated–new-type building energy management system allows energy-unlimited nodes to temporarily receive packets that are routed to a nearby energy-limited nodes. In this way, time synchronization for low-power sleep at media access control layer is no longer required, which reduces the delay and control overhead at media access control layer dramatically. Relay participated–new-type building energy management system reduces energy usage of energy-limited nodes and extend the lifetime of wireless sensor networks in new-type building energy management systems. Simulation results show that the relay participated–new-type building energy management system protocol significantly improves energy efficiency of limited energy nodes and reduces latency as compared to ad hoc on-demand distance vector–sensor medium access control and low-energy adaptive clustering hierarchy.

2014 ◽  
Vol 10 (4) ◽  
pp. 1-43 ◽  
Author(s):  
Aqeel H. Kazmi ◽  
Michael J. O'grady ◽  
Declan T. Delaney ◽  
Antonio G. Ruzzelli ◽  
Gregory M. P. O'hare

2020 ◽  
Vol 13 (1) ◽  
pp. 132
Author(s):  
Christian Pfeiffer ◽  
Markus Puchegger ◽  
Claudia Maier ◽  
Ina V. Tomaschitz ◽  
Thomas P. Kremsner ◽  
...  

Due to the increase of volatile renewable energy resources, additional flexibility will be necessary in the electricity system in the future to ensure a technically and economically efficient network operation. Although home energy management systems hold potential for a supply of flexibility to the grid, private end users often neglect or even ignore recommendations regarding beneficial behavior. In this work, the social acceptance and requirements of a participatively developed home energy management system with focus on (i) system support optimization, (ii) self-consumption and self-sufficiency optimization, and (iii) additional comfort functions are determined. Subsequently, the socially-accepted flexibility potential of the home energy management system is estimated. Using methods of online household survey, cluster analysis, and energy-economic optimization, the socially-accepted techno-economic potential of households in a three-community cluster sample area is computed. Results show about a third of the participants accept the developed system. This yields a shiftable load of nearly 1.8 MW within the small sample area. Furthermore, the system yields the considerably larger monetary surplus on the supplier-side due to its focus on system support optimization. New electricity market opportunities are necessary to adequately reward a systemically useful load behavior of households.


Sign in / Sign up

Export Citation Format

Share Document