Energy management systems. Guidance for implementing a common energy management system in multiple organizations

2021 ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 132
Author(s):  
Christian Pfeiffer ◽  
Markus Puchegger ◽  
Claudia Maier ◽  
Ina V. Tomaschitz ◽  
Thomas P. Kremsner ◽  
...  

Due to the increase of volatile renewable energy resources, additional flexibility will be necessary in the electricity system in the future to ensure a technically and economically efficient network operation. Although home energy management systems hold potential for a supply of flexibility to the grid, private end users often neglect or even ignore recommendations regarding beneficial behavior. In this work, the social acceptance and requirements of a participatively developed home energy management system with focus on (i) system support optimization, (ii) self-consumption and self-sufficiency optimization, and (iii) additional comfort functions are determined. Subsequently, the socially-accepted flexibility potential of the home energy management system is estimated. Using methods of online household survey, cluster analysis, and energy-economic optimization, the socially-accepted techno-economic potential of households in a three-community cluster sample area is computed. Results show about a third of the participants accept the developed system. This yields a shiftable load of nearly 1.8 MW within the small sample area. Furthermore, the system yields the considerably larger monetary surplus on the supplier-side due to its focus on system support optimization. New electricity market opportunities are necessary to adequately reward a systemically useful load behavior of households.


2017 ◽  
Vol 13 (1) ◽  
pp. 155014771668361 ◽  
Author(s):  
Kewang Zhang ◽  
Qizhao Wu ◽  
Xin Li

With the development of wireless sensor networks, many building energy management systems are getting to adopt wireless sensor network as their communication infrastructure. However, the existing wireless sensor network protocols cannot satisfy the energy-saving demand of building energy management systems. Considering the characteristics of the building energy management system wireless sensor networks, a novel energy-efficient routing scheme is proposed called relay participated–new-type building energy management system. Nodes in the building energy management system wireless sensor networks are divided into two types: energy-limited nodes (battery powered) and energy-unlimited nodes (main powered, solar charger, or heat energy powered). Relay participated–new-type building energy management system allows energy-unlimited nodes to temporarily receive packets that are routed to a nearby energy-limited nodes. In this way, time synchronization for low-power sleep at media access control layer is no longer required, which reduces the delay and control overhead at media access control layer dramatically. Relay participated–new-type building energy management system reduces energy usage of energy-limited nodes and extend the lifetime of wireless sensor networks in new-type building energy management systems. Simulation results show that the relay participated–new-type building energy management system protocol significantly improves energy efficiency of limited energy nodes and reduces latency as compared to ad hoc on-demand distance vector–sensor medium access control and low-energy adaptive clustering hierarchy.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3299 ◽  
Author(s):  
Mohammad Shakeri ◽  
Jagadeesh Pasupuleti ◽  
Nowshad Amin ◽  
Md. Rokonuzzaman ◽  
Foo Wah Low ◽  
...  

Electricity demand is increasing, as a result of increasing consumers in the electricity market. By growing smart technologies such as smart grid and smart energy management systems, customers were given a chance to actively participate in demand response programs (DRPs), and reduce their electricity bills as a result. This study overviews the DRPs and their practices, along with home energy management systems (HEMS) and load management techniques. The paper provides brief literature on HEMS technologies and challenges. The paper is organized in a way to provide some technical information about DRPs and HEMS to help the reader understand different concepts about the smart grid, and be able to compare the essential concerns about the smart grid. The article includes a brief discussion about DRPs and their importance for the future of energy management systems. It is followed by brief literature about smart grids and HEMS, and a home energy management system strategy is also discussed in detail. The literature shows that storage devices have a huge impact on the efficiency and performance of energy management system strategies.


Author(s):  
Людмила Федоськина ◽  
Lyudmila Fedoskina ◽  
Евгений Абрамов ◽  
Eugene Abramov

The monograph examines the trends and prospects of energy efficiency management of industrial enterprises, taking into account international and domestic experience. Theoretical and methodological provisions in the field of energy efficiency management are considered and practical approaches to the formation of energy management systems based on the requirements of international and national standards ISO 50001 taking into account the Russian practice of energy saving and energy efficiency management are proposed. For researchers dealing with energy efficiency management of enterprises


Author(s):  
Марія Василівна Фігурка

The paper offers the research findings on the implementation feasibility and specifics of internal energy management in the institutions of higher education (IHE) in Ukraine, based on ISO 50001 international standard requirements as a part of total management system within the government vector of energy saving economy framework. The emphasis is maid on exploring the overall effects on the economic position of institutions of higher education from the growing utility costs burden that influences the education high quality maintenance as well as university competitiveness on the higher education market. Rationale is provided on the validity and commonality of methods, approaches and techniques for the implementation of the internal energy management system in institutions of higher education according to the ISO 50001 standard together with demonstrating the simplicity of the given standard integration into the current management systems. It is argued that on the one hand, the implementation of energy management systems in institutions of higher education assumes certain financial investment and administrative and organizational changes, on the other, it lays the basis for attracting funding for capital projects on infrastructure modernization. The benefits of the new version of the ISO 50001: 2018 standard have been investigated, their tendency to switching to the area of service sector have been specified and the application of its basic approaches to enhance energy management systems of institutions of higher education has been proposed. The study employed the following empirical and theoretical methods: expert analysis (study on the benefits of the international standards ISO 50001 series implementation); systems and analytical (to justify the feasibility of using international standard approaches while making management decisions within IHE). The motivation behind the implementation of IHE integrated management systems based on the requirements of the international standards of the ISO 50001 series has been explored. From the semantic analysis perspective, in the context of the research subject area, a hypothesis about the need to expand the application of ISO 500001 energy management systems has been put forward. During the verification of this hypothesis a relationship between energy saving policy and the IHE economic security has been substantiated. It is argued that energy management system is an organic element in strategic management architecture which affects the competitiveness of IHE.


2019 ◽  
Vol 1 (2) ◽  
pp. 73-82
Author(s):  
D. A. Zhiganov

Subject: automated energy management systems.Purpose: identification of the main prospects for the use of automated energy management systems.Materials and methods: in Russia each year, due to the scornful attitude towards energy saving, about 400 million tons of reference fuel are lost, while only every third company approaches the energy efficiency systemically. Savings of fuel and energy resources largely depend on the proper organization and feasibility of rationing fuel and energy costs. One of the priorities of the strategy of transition to energy-efficient production is to carry out systematic work on the implementation of a system of resource and energy saving — the formation of the energy policy of the enterprise. The introduction and development of energy metering systems (AIIS TUE) for the sake of increasing the transparency of consumption and distribution of energy resources is an integral part of the implementation of the company’s energy policy. Minimizing the influence of the human factor at all stages is easily amenable to mathematical description and, accordingly, automation. The paper shows that without automation of management processes and monitoring energy efficiency it is impossible to count on success. The main stages of the implementation of the energy management system at the enterprise are given.Results: it is shown that the main result of the introduction of an automated energy management system is to reduce costs by more than 10 %, with the identified potential for further savings of at least 15...20 %, which is achieved by cre­ating a completely transparent energy consumption environment, with its characteristic reliability determined efficiency of the processed information.Conclusions: automated energy management can become the core in which all information flows from all management systems that have an impact on energy efficiency will be consolidated. Properly constructed automated energy manage­ment systems are a universal tool for implementing the energy policy of an enterprise, a serious investment with a clear payback horizon and an positive financial result over a long period.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4260 ◽  
Author(s):  
Alessandro Serpi ◽  
Mario Porru

Modelling and design of real-time energy management systems for optimising the operating costs of a fuel cell/battery electric vehicle are presented in this paper. The proposed energy management system consists of optimally sharing the propulsion power demand between the fuel cell and battery by enabling them to support each other for operating cost minimisation. The optimisation is achieved through real-time minimisation of a cost function, which accounts for fuel cell and battery degradation, hydrogen consumption and charge sustaining costs. A detailed analysis of each term of the overall cost function is performed and presented, which enables the development of a real-time, advanced energy management system for improving a previously presented simplified version using more accurate modelling and by considering cost function minimisation over a given time horizon. The performance of the proposed advanced energy management system are verified through numerical simulations over different driving cycles; particularly, simulations were performed in MATLAB-Simulink by considering a hysteresis-based energy management system and both simplified and advanced versions of the proposed energy management system for comparison.


Sign in / Sign up

Export Citation Format

Share Document