scholarly journals Exploiting self-organization and fault tolerance in wireless sensor networks: A case study on wildfire detection application

2017 ◽  
Vol 13 (4) ◽  
pp. 155014771770412 ◽  
Author(s):  
Felipe Taliar Giuntini ◽  
Delano Medeiros Beder ◽  
Jó Ueyama
Author(s):  
RAMNESH DUBEY ◽  
SANTOSH KUMAR SWAIN ◽  
CHANDRA PRAKASH KASHYAP ◽  
RAJESH BERA

Fault tolerance is one of the main issues in Wireless Sensor Networks (WSNs) since it becomes critical in real deployment environment where reliability and reduced inaccessibility times are important. In this paper, we propose a fault–tolerance technique for coverage area of the sensor network that enhances the energy efficiency by reducing the communication, with the help of Constrained Delaunay Triangulation intersect line. Further by applying the above approach, we reduce the energy consumption and congestion in the network. In last, we describe our approach with a case study that our approach is better in fault tolerance and energy saving.


Fault Tolerant Reliable Protocol (FTRP) is proposed as a novel routing protocol designed for Wireless Sensor Networks (WSNs). FTRP offers fault tolerance reliability for packet exchange and support for dynamic network changes. The key concept used is the use of node logical clustering. The protocol delegates the routing ownership to the cluster heads where fault tolerance functionality is implemented. FTRP utilizes cluster head nodes along with cluster head groups to store packets in transient. In addition, FTRP utilizes broadcast, which reduces the message overhead as compared to classical flooding mechanisms. FTRP manipulates Time to Live values for the various routing messages to control message broadcast. FTRP utilizes jitter in messages transmission to reduce the effect of synchronized node states, which in turn reduces collisions. FTRP performance has been extensively through simulations against Ad-hoc On-demand Distance Vector (AODV) and Optimized Link State (OLSR) routing protocols. Packet Delivery Ratio (PDR), Aggregate Throughput and End-to-End delay (E-2-E) had been used as performance metrics. In terms of PDR and aggregate throughput, it is found that FTRP is an excellent performer in all mobility scenarios whether the network is sparse or dense. In stationary scenarios, FTRP performed well in sparse network; however, in dense network FTRP’s performance had degraded yet in an acceptable range. This degradation is attributed to synchronized nodes states. Reliably delivering a message comes to a cost, as in terms of E-2-E. results show that FTRP is considered a good performer in all mobility scenarios where the network is sparse. In sparse stationary scenario, FTRP is considered good performer, however in dense stationary scenarios FTRP’s E-2-E is not acceptable. There are times when receiving a network message is more important than other costs such as energy or delay. That makes FTRP suitable for wide range of WSNs applications, such as military applications by monitoring soldiers’ biological data and supplies while in battlefield and battle damage assessment. FTRP can also be used in health applications in addition to wide range of geo-fencing, environmental monitoring, resource monitoring, production lines monitoring, agriculture and animals tracking. FTRP should be avoided in dense stationary deployments such as, but not limited to, scenarios where high application response is critical and life endangering such as biohazards detection or within intensive care units.


2005 ◽  
Vol 1 (2) ◽  
pp. 245-252 ◽  
Author(s):  
P. Davis ◽  
A. Hasegawa ◽  
N. Kadowaki ◽  
S. Obana

We propose a method for managing the spontaneous organization of sensor activity in ad hoc wireless sensor systems. The wireless sensors exchange messages to coordinate responses to requests for sensing data, and to control the fraction of sensors which are active. This method can be used to manage a variety of sensor activities. In particular, it can be used for reducing the power consumption by battery operated devices when only low resolution sensing is required, thus increasing their operation lifetimes.


2018 ◽  
Vol 38 (1) ◽  
pp. 130-138 ◽  
Author(s):  
Željko Gavrić ◽  
Dejan Simić

Wireless sensor networks are now used in various fields. The information transmitted in the wireless sensor networks is very sensitive, so the security issue is very important. DOS (denial of service) attacks are a fundamental threat to the functioning of wireless sensor networks. This paper describes some of the most common DOS attacks and potential methods of protection against them. The case study shows one of the most frequent attacks on wireless sensor networks – the interference attack. In the introduction of this paper authors assume that the attack interference can cause significant obstruction of wireless sensor networks. This assumption has been proved in the case study through simulation scenario and simulation results.


Sign in / Sign up

Export Citation Format

Share Document