link quality estimation
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 30)

H-INDEX

12
(FIVE YEARS 3)

2022 ◽  
Vol 18 (1) ◽  
pp. 1-20
Author(s):  
Jia Zhang ◽  
Xiuzhen Guo ◽  
Haotian Jiang ◽  
Xiaolong Zheng ◽  
Yuan He

Research on cross-technology communication ( CTC ) has made rapid progress in recent years. While the CTC links are complex and dynamic, how to estimate the quality of a CTC link remains an open and challenging problem. Through our observation and study, we find that none of the existing approaches can be applied to estimate the link quality of CTC. Built upon the physical-level emulation, transmission over a CTC link is jointly affected by two factors: the emulation error and the channel distortion. Furthermore, the channel distortion can be modeled and observed through the signal strength and the noise strength. We, in this article, propose a new link metric called C-LQI and a joint link model that simultaneously takes into account the emulation error and the channel distortion in the In-phase and Quadrature ( IQ ) domain. We accurately describe the superimposed impact on the received signal. We further design a lightweight link estimation approach including two different methods to estimate C-LQI and in turn the packet reception rate ( PRR ) over the CTC link. We implement C-LQI and compare it with two representative link estimation approaches. The results demonstrate that C-LQI reduces the relative estimation error by 49.8% and 51.5% compared with s-PRR and EWMA, respectively.


2021 ◽  
Author(s):  
Hiroto Fujita ◽  
Yasuyuki Tanaka ◽  
Kosuke Mori ◽  
Fumio Teraoka

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Jie Li ◽  
Yang Pan ◽  
Shijian Ni ◽  
Feng Wang

In Industrial Wireless Networks (IWNs), the communication through Machine-to-Machine (M2M) is often affected by the noise in the industrial environment, which leads to the decline of communication reliability. In this paper, we investigate how to improve route stability through M2M in an industrial environment. We first compare different link quality estimations, such as Signal-Noise Ratio (SNR), Received Signal Strength Indicator (RSSI), Link Quality Indicator (LQI), Packet Reception Ratio (PRR), and Expected Transmission Count (ETX). We then propose a link quality estimation combining LQI and PRR. Finally, we propose a Hybrid Link Quality Estimation-Based Reliable Routing (HLQEBRR) algorithm for IWNs, with the object of maximizing link stability. In addition, HLQEBRR provides a recovery mechanism to detect node failure, which improves the speed and accuracy of node recovery. OMNeT++-based simulation results demonstrate that our HLQEBRR algorithm significantly outperforms the Collection Tree Protocol (CTP) algorithm in terms of end-to-end transmission delay and packet loss ratio, and the HLQEBRR algorithm achieves higher reliability at a small additional cost.


2021 ◽  
Author(s):  
Chao Meng

Abstract Link quality is important and can greatly affect the performance of wireless transmission algorithms and protocols. Currently, researchers have proposed a variety of approaches to implement link quality estimation. However, the estimated result of link quality is not accurate enough and the error is large, so they may lead to the failure of routing algorithm and protocol. In this paper, a novel method is proposed to achieve the more accurate estimation of link quality than before. This method employs Bernoulli sampling-based algorithm to complete the estimation of link quality. The problem is modeled as calculation of estimators based on Bernoulli sampling data. The authors further prove that the calculation results are accurate by probability theory. Furthermore, according to link quality estimation, the authors also provide a centralized routing algorithm and a distributed improvement algorithm in order to switch the data transmission on the better quality link. Finally, the extensive experiment results indicate that the proposed methods obtain high performance in terms of energy consumption and accuracy.


Sign in / Sign up

Export Citation Format

Share Document