scholarly journals Seismic design and analysis of reinforced concrete buckling-restrained braced frame buildings with multi-performance criteria

2019 ◽  
Vol 15 (10) ◽  
pp. 155014771988135
Author(s):  
Yanchao Yue ◽  
Tangbing Chen ◽  
Yongtao Bai ◽  
Xiaoming Lu ◽  
Yan Wang ◽  
...  

Buckling-restrained braces play a critical role as the first-defendant line in dissipating seismic energy and are often used in concrete frame structures to ensure that the main beam–column members are “undamaged” or significantly elastic during medium earthquakes. The design of the reinforced concrete frame structures with buckling-restrained brace is generally based on the assumption of shear deformation of the structure. The conventional seismic design considers the “second-defendant line design” based on the geometric relationship between the axial deformation and strength of buckling-restrained braces and stratified deformation. This article proposes iterative optimization of the buckling-restrained brace design method and layout scheme based on the nonlinear structural response of the calibrated numerical model, and then approximates the nonlinear structure scheme using a linear method. Time history analyses are performed to prove that the linear design method is highly conservative for estimating seismic intensity, and the proposed design method provides more efficient damage distributions in frame components. The results of the nonlinear performance evaluation and energy analysis indicate that the method proposed in this article can meet the performance design requirements achieving multi-performance criteria.

2011 ◽  
Vol 243-249 ◽  
pp. 717-723
Author(s):  
Jin Gang Xiong ◽  
Yon Kang Zheng ◽  
Guan Min Cai ◽  
Yan Li

In this paper the analysis is conducted to investigate the progressive collapse resistance of typical reinforced concrete(RC) multi-story frame structures, which are designed according to the China code for seismic design of buildings. The analysis results show that the progressive collapse resistance will be enhanced with the seismic fortification intensity increasing. The progressive collapse resistance of RC frame structures with low seismic fortification intensity are poor. This implies that as for RC frame structures with low seismic or non-seismic demand, close attention must be paid to continuity and ductility in order to prevent progressive collapse.


2021 ◽  
Vol 15 (1) ◽  
pp. 203-225
Author(s):  
Massimiliano Ferraioli ◽  
Angelo Lavino ◽  
Carmine Molitierno ◽  
Gennaro Di Lauro

Background: The seismic retrofitting of frame structures using hysteretic dampers is a very effective strategy to mitigate earthquake-induced risks. However, its application in current practice is rather limited since simple and efficient design methods are still lacking, and the more accurate time-history analysis is time-consuming and computationally demanding. Aims: This paper develops and applies a seismic retrofit design method to a complex real case study: An eight-story reinforced concrete residential building equipped with buckling-restrained braces. Methods: The design method permits the peak seismic response to be predicted, as well as the dampers to be added in the structure to obtain a uniform distribution of the ductility demand. For that purpose, a pushover analysis with the first mode load pattern is carried out. The corresponding story pushover curves are first idealized using a degrading trilinear model and then used to define the SDOF (Single Degree-of-Freedom) system equivalent to the RC frame. The SDOF system, equivalent to the damped braces, is designed to meet performance criteria based on a target drift angle. An optimal damper distribution rule is used to distribute the damped braces along the elevation to maximize the use of all dampers and obtain a uniform distribution of the ductility demand. Results: The effectiveness of the seismic retrofit is finally demonstrated by non-linear time-history analysis using a set of earthquake ground motions with various hazard levels. Conclusion: The results proved the design procedure is feasible and effective since it achieves the performance objectives of damage control in structural members and uniform ductility demand in dampers.


2010 ◽  
Vol 163-167 ◽  
pp. 1757-1761
Author(s):  
Yong Le Qi ◽  
Xiao Lei Han ◽  
Xue Ping Peng ◽  
Yu Zhou ◽  
Sheng Yi Lin

Various analytical approaches to performance-based seismic design are in development. Based on the current Chinese seismic codes,elastic capacity calculation under frequent earthquake and ductile details of seismic design shall be performed for whether seismic design of new buildings or seismic evaluation of existing buildings to satisfy the seismic fortification criterion “no damage under frequent earthquake, repairable under fortification earthquake, no collapse under severe earthquake”. However, for some special buildings which dissatisfy with the requirements of current building codes, elastic capacity calculation under frequent earthquake is obviously not enough. In this paper, the advanced performance-based seismic theory is introduced to solve the problems of seismic evaluation and strengthening for existing reinforced concrete structures, in which story drift ratio and deformation of components are used as performance targets. By combining the features of Chinese seismic codes, a set of performance-based seismic design method is established for reinforced concrete structures. Different calculation methods relevant to different seismic fortification criterions are adopted in the proposed method, which solve the problems of seismic evaluation for reinforced concrete structures.


Sign in / Sign up

Export Citation Format

Share Document