seismic design method
Recently Published Documents


TOTAL DOCUMENTS

137
(FIVE YEARS 35)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 11 (4) ◽  
pp. 266-279
Author(s):  
Tint Lwin ◽  
Takeshi Koike ◽  
Ji Dang

In general, the US codes such as the UBC-97 and ASCE-7 are widely used in developing countries including Myanmar, Syria, Philippines and so on. When the current seismic design guideline based on the UBC-97 and ACI 318-99 in Myanmar is assessed, several problems can be found in the following items: firstly, the fundamental period is not checked in modeling; secondly, reduction factor R is introduced a priori for the base shear estimation. And finally, a limit state assessment is done only for Design Basic Earthquake (DBE) but not for other design earthquakes. As a result, adequate yield strength is not checked for Maximum Operational Earthquake (MOE). Then there is no way to assess the seismic safety of the ultimate limit state for Maximum Considered Earthquake (MCE). In order to solve these problems, a rationalized seismic design method for earthquake prone developing countries is proposed. A new seismic design method is developed for MOE and MCE with adequate yield acceleration and typical period of the building estimated by using pushover analysis. A simplified procedure to estimate the inelastic response for a given design spectrum is also proposed. Finally, this design procedure can provide a rational method to assess the seismic safety for the ultimate limit of the building.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Huixing Gao ◽  
Yang Song ◽  
Wenting Yuan ◽  
Hongxu Lu ◽  
Shuo Cao

This paper aims to study the deformational behaviour of tensile-type viscoelastic dampers under different earthquake excitation directions. A method for calculating the corresponding equivalent additional stiffness and damping of a self-centring-segment bridge pier is derived. Using the displacement-based seismic design method, a design method for self-centring-segment bridge piers with tensile-type viscoelastic dampers is proposed. Using the proposed method, a self-centring-segment bridge pier is designed. Based on dynamic analysis of the finite element model by OpenSees, the effectiveness of the proposed seismic design method is validated.


2021 ◽  
pp. 102963
Author(s):  
Wongsa Wararuksajja ◽  
Jarun Srechai ◽  
Sutat Leelataviwat ◽  
Trirat Sungkamongkol ◽  
Suchart Limkatanyu

2021 ◽  
Author(s):  
Paolo Morandi ◽  
Christoph Butenweg ◽  
Khaled Breis ◽  
Katrin Beyer ◽  
Guido Magenes

Abstract Recent earthquakes as the 2012 Emilia earthquake sequence showed that recently built unreinforced masonry (URM) buildings behaved much better than expected and sustained, despite the maximum PGA values ranged between 0.20 - 0.30g, either minor damage or structural damage that is deemed repairable. Especially low-rise residential and commercial masonry buildings with a code-conforming seismic design and detailing behaved in general very well without substantial damages. The low damage grades of modern masonry buildings that was observed during this earthquake series highlighted again that codified design procedures based on linear analysis can be rather conservative. Although advances in simulation tools make nonlinear calculation methods more readily accessible to designers, linear analyses will still be the standard design method for years to come. The present paper aims to improve the linear seismic design method by providing a proper definition of the q-factor of URM buildings. These q-factors are derived for low-rise URM buildings with rigid diaphragms which represent recent construction practise in low to moderate seismic areas of Italy and Germany. The behaviour factor components for deformation and energy dissipation capacity and for overstrength due to the redistribution of forces are derived by means of pushover analyses. Furthermore, considerations on the behaviour factor component due to other sources of overstrength in masonry buildings are presented. As a result of the investigations, rationally based values of the behaviour factor q to be used in linear analyses in the range of 2.0 to 3.0 are proposed.


Sign in / Sign up

Export Citation Format

Share Document