scholarly journals Neurointerventional participation in craniopagus separation

2015 ◽  
Vol 21 (4) ◽  
pp. 552-557 ◽  
Author(s):  
Riyadh Nasser Alokaili ◽  
Muhammad Ejaz Ahmed ◽  
Ahmed Al Feryan ◽  
James T Goodrich ◽  
Ahmed Aloraidi

Craniopagus-type conjoined twins (joined at the head) are exceedingly rare. Separation of craniopagus conjoined twins is a challenging task mainly owing to complex vascular anatomy and limited experience with this disorder. Modern neuroimaging techniques including digital subtraction angiography can be used to preoperatively assess the cerebral vascular system. These techniques can also provide the raw data to fabricate three-dimensional true-scale models. We report a case in which endovascular techniques have been used in the separation of craniopagus conjoined twins. To our knowledge there are no reports of successful incorporation of neurointerventional methods in the disconnection of shared venous channels.

2021 ◽  
Author(s):  
Serge Marbacher ◽  
Matthias Halter ◽  
Deborah R Vogt ◽  
Jenny C Kienzler ◽  
Christian T J Magyar ◽  
...  

Abstract BACKGROUND The current gold standard for evaluation of the surgical result after intracranial aneurysm (IA) clipping is two-dimensional (2D) digital subtraction angiography (DSA). While there is growing evidence that postoperative 3D-DSA is superior to 2D-DSA, there is a lack of data on intraoperative comparison. OBJECTIVE To compare the diagnostic yield of detection of IA remnants in intra- and postoperative 3D-DSA, categorize the remnants based on 3D-DSA findings, and examine associations between missed 2D-DSA remnants and IA characteristics. METHODS We evaluated 232 clipped IAs that were examined with intraoperative or postoperative 3D-DSA. Variables analyzed included patient demographics, IA and remnant distinguishing characteristics, and 2D- and 3D-DSA findings. Maximal IA remnant size detected by 3D-DSA was measured using a 3-point scale of 2-mm increments. RESULTS Although 3D-DSA detected all clipped IA remnants, 2D-DSA missed 30.4% (7 of 23) and 38.9% (14 of 36) clipped IA remnants in intraoperative and postoperative imaging, respectively (95% CI: 30 [ 12, 49] %; P-value .023 and 39 [23, 55] %; P-value = <.001), and more often missed grade 1 (< 2 mm) clipped remnants (odds ratio [95% CI]: 4.3 [1.6, 12.7], P-value .005). CONCLUSION Compared with 2D-DSA, 3D-DSA achieves a better diagnostic yield in the evaluation of clipped IA. Our proposed method to grade 3D-DSA remnants proved to be simple and practical. Especially small IA remnants have a high risk to be missed in 2D-DSA. We advocate routine use of either intraoperative or postoperative 3D-DSA as a baseline for lifelong follow-up of clipped IA.


2021 ◽  
Vol 12 ◽  
pp. 85
Author(s):  
Toshihiro Ishibashi ◽  
Fumiaki Maruyama ◽  
Issei Kan ◽  
Tohru sano ◽  
Yuichi Murayama

Background: Intraosseous arteriovenous fistula (AVF) is a rare clinical entity that typically presents with symptoms from their effect on surrounding structures. Here, we report a case of intraosseous AVF in the sphenoid bone that presented with bilateral abducens palsy. Case Description: A previously healthy man presented with tinnitus for 1 month, and initial imaging suspected dural AVF of the cavernous sinus. Four-dimensional digital subtraction angiography (4D-DSA) imaging and a three-dimensional (3D) fused image from the bilateral external carotid arteries revealed that the shunt was in a large venous pouch within the sphenoid bone that was treated through transvenous coil embolization. His symptoms improved the day after surgery. Conclusion: This is a case presentation of intraosseous AVF in the sphenoid bone and highlights the importance of 4D-DSA and 3D fused images for planning the treatment strategy.


Neurosurgery ◽  
2019 ◽  
Vol 87 (4) ◽  
pp. 689-696 ◽  
Author(s):  
Serge Marbacher ◽  
Jenny C Kienzler ◽  
Itai Mendelowitsch ◽  
Donato D’Alonzo ◽  
Lukas Andereggen ◽  
...  

Abstract BACKGROUND Postoperative three-dimensional digital subtraction angiography (3D-DSA) is the gold standard in evaluating intracranial aneurysm (IA) remnants after clipping. Should intraoperative 3D-DSA image quality be equally good as postoperative 3D-DSA, it could supplant the latter as standard of care for follow-up of clipped IA. OBJECTIVE To directly compare the quality of assessment of clipped IA by intraoperative and postoperative 3D-DSA. METHODS From a prospective cohort of 221 consecutive patients who underwent craniotomy for IA treatment in a hybrid operating room, we retrospectively studied 26 patients who had both intraoperative and postoperative 3D-DSA imaging of their clipped aneurysm. Comparison of intraoperative and postoperative 3D-DSA images (blinded for review) included parameters that affected image quality and differences between the 2 periods. RESULTS In the 26 patients with 32 clipped IAs, the mean interval was 11 ± 7 mo between intraoperative and postoperative imaging 3D-DSA examinations. Reconstruction with multiple clips was used in 14 (44%) cases. Of 15 remnants, 9 (60%) were small (<2 mm). In comparing intraoperative and postoperative 3D-DSA, no discordance or discrepancy in assessment of the surgical result was noted for any clipped IA, and overall imaging quality was excellent for both modalities. Factors affecting minor differences in image quality were not identified. CONCLUSION Compared with postoperative 3D-DSA, intraoperative 3D-DSA images achieved equally high quality and effective, immediate interpretation of the surgical clipping result. With comparable imaging quality and no discordant findings, intraoperative 3D-DSA could replace postoperative 3D-DSA to become the standard of care in IA surgery.


2020 ◽  
Vol 26 (6) ◽  
pp. 733-740
Author(s):  
Te-Chang Wu ◽  
Yu-Kun Tsui ◽  
Tai-Yuan Chen ◽  
Ching-Chung Ko ◽  
Chien-Jen Lin ◽  
...  

Background To investigate the discrepancy between two-dimensional digital subtraction angiography and three-dimensional rotational angiography for small (<5 mm) cerebral aneurysms and the impact on decision making among neuro-interventional experts as evaluated by online questionnaire. Materials and methods Eight small (<5 mm) ruptured aneurysms were visually identified in 16 image sets in either two-dimensional or three-dimensional format for placement in a questionnaire for 11 invited neuro-interventionalists. For each set, two questions were posed: Question 1: “Which of the following is the preferred treatment choice: simple coiling, balloon remodeling or stent assisted coiling?”; Question 2: “Is it achievable to secure the aneurysm with pure simple coiling?” The discrepancies of angio-architecture parameters and treatment choices between two-dimensional-digital subtraction angiography and three-dimensional rotational angiography were evaluated. Results In all eight cases, the neck images via three-dimensional rotational angiography were larger than two-dimensional-digital subtraction angiography with a mean difference of 0.95 mm. All eight cases analyzed with three-dimensional rotational angiography, but only one case with two-dimensional-digital subtraction angiography were classified as wide-neck aneurysms with dome-to-neck ratio < 1.5. The treatment choices based on the two-dimensional or three-dimensional information were different in 56 of 88 (63.6%) paired answers. Simple coiling was the preferred choice in 66 (75%) and 26 (29.6%) answers based on two-dimensional and three-dimensional information, respectively. Three types of angio-architecture with a narrow gap between the aneurysm sidewall and parent artery were proposed as an explanation for neck overestimation with three-dimensional rotational angiography. Conclusions Aneurysm neck overestimation with three-dimensional rotational angiography predisposed neuro-interventionalists to more complex treatment techniques. Additional two-dimensional information is crucial for endovascular treatment planning for small cerebral aneurysms.


Sign in / Sign up

Export Citation Format

Share Document