scholarly journals Synchronization approach for chaotic time-varying delay system based on Wirtinger inequality

2017 ◽  
Vol 9 (1) ◽  
pp. 168781401668902
Author(s):  
Zhanshan Zhao ◽  
Meili He ◽  
Jing Zhang ◽  
Guowei Xu

A novel control approach based on Wirtinger inequality is designed for nonlinear chaos synchronization time delay system. In order to reduce the conservatism for the stability criterion, a Lyapunov–Krasovskii functional with triple-integral term is constructed. The improved Wirtinger inequality is used to reduce the conservative which is caused by Jensen inequality, and a stability criterion is proposed by reciprocally convex method. Furthermore, a state feedback controller is designed to synchronize the master-slave systems based on the proposed criteria through cone complementary linearization approach. Finally, a simulation for Lorenz chaos time delay system is given to prove the validity based on the proposed synchronization control approach.

Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 447 ◽  
Author(s):  
Yanli Ruan ◽  
Tianmin Huang

This paper is concerned with the problem of finite-time control for nonlinear systems with time-varying delay and exogenous disturbance, which can be represented by a Takagi–Sugeno (T-S) fuzzy model. First, by constructing a novel augmented Lyapunov–Krasovskii functional involving several symmetric positive definite matrices, a new delay-dependent finite-time boundedness criterion is established for the considered T-S fuzzy time-delay system by employing an improved reciprocally convex combination inequality. Then, a memory state feedback controller is designed to guarantee the finite-time boundness of the closed-loop T-S fuzzy time-delay system, which is in the framework of linear matrix inequalities (LMIs). Finally, the effectiveness and merits of the proposed results are shown by a numerical example.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Xueying Shao ◽  
Qing Lu ◽  
Hamid Reza Karimi ◽  
Jin Zhu

The paper investigates the stability and passivity analysis problems for a class of uncertain neural networks with time-delay via delta operator approach. Both the parameter uncertainty and the generalized activation functions are considered in this paper. By constructing an appropriate Lyapunov-Krasovskii functional, some new stability and passivity conditions are obtained in terms of linear matrix inequalities (LMIs). The main characteristic of this paper is to obtain novel stability and passivity analysis criteria for uncertain neural networks with time-delay in the delta operator system framework. A numerical example is presented to demonstrate the effectiveness of the proposed results.


2019 ◽  
Vol 37 (2) ◽  
pp. 422-440 ◽  
Author(s):  
Chang-Hua Lien ◽  
Ker-Wei Yu ◽  
Hao-Chin Chang

Abstract In this paper, the problem of mixed ${H}_2$ and passive switching control of uncertain discrete time-delay switched systems is investigated via a switching signal selection. Lyapunov theory with Wirtinger inequality is applied to guarantee the mixed performance for discrete switched time-delay system. The used Linear Matrix Inequality variables are less than our past proposed results. Finally, the improvement of the developed results is illustrated via a numerical example.


Automatica ◽  
1998 ◽  
Vol 34 (3) ◽  
pp. 375-378 ◽  
Author(s):  
Mustapha S. Fofana ◽  
David J. Lamb

Author(s):  
Zhen Cai ◽  
Guozhen Hu ◽  
◽  

This study provides an insight into the asymptotic stability of a drilling inclination system with a time-varying delay. An appropriate Lyapunov–Krasovskii functional (LKF) is essential for the stability analysis of the abovementioned system. In general, an LKF is constructed with each coefficient matrix being positive definite, which results in considerable conservatism. Herein, to relax the conditions of the derived criteria, a novel LKF is proposed by avoiding the positive-definite restriction of some coefficient matrices and introducing additional free matrices simultaneously. Subsequently, this relaxed LKF is applied to derive a less conservative stability criterion for the abovementioned system. Finally, the effect of reducing the conservatism of the proposed LKF is verified based on two examples.


Author(s):  
Pin-Lin Liu

This paper deals with the stabilization criteria for a class of time-varying delay systems with saturating actuator. Based on the Lyapunov–Krasovskii functional combining with linear matrix inequality techniques and Leibniz–Newton formula, delay-dependent stabilization criteria are derived using a state feedback controller. We also consider efficient convex optimization algorithms to the time-varying delay system with saturating actuator case: the maximal bound on the time delay such that the prescribed level of operation range and imposed exponential stability requirements are still preserved. The value of the time-delay as well as its rate of change are taken into account in the design method presented and further permit us to reduce the conservativeness of the approach. The results have been illustrated by given numerical examples. These results are shown to be less conservative than those reported in the literature.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Bin Yang ◽  
Chen-xin Fan

A novel combined convex method is developed for the stability of linear systems with a time-varying delay. A new delay-dependent stability condition expressed in terms of linear matrix inequalities (LMIs) is derived by employing a dedicated constructed Lyapunov-Krasovskii functional (LKF), utilizing the Wirtinger inequality and the reciprocally convex approach to handle the integral term of quadratic quantities. Different from the previous convex techniques which only tackle the time-varying delay, our method adopts the idea of combined convex technique which can tackle not only the delay but also the delay variation. Four well-known examples are illustrated to show the effectiveness of the proposed results.


Sign in / Sign up

Export Citation Format

Share Document