scholarly journals Dynamic response and damage analysis of steel box wall under internal blast loading

2019 ◽  
Vol 11 (1) ◽  
pp. 168781401882260
Author(s):  
Duo Zhang ◽  
Shujian Yao ◽  
Fangyun Lu ◽  
Jiangjie Song ◽  
Yuqing Ding

Different loading conditions, different structural dimensions, or different structural materials will lead to different damage results. In this study, blast experiment of steel box model under internal explosion was conducted and the numerical methods are validated through comparison of experimental and numerical results. Then, a series of multi-box models were built, and a large number of numerical simulations considering two kinds of steel, different plate thickness ranging from 0.005 to 0.025 m, and different TNT explosive mass ranging from 5 to 2000 kg were carried out using the validated numerical methods. Two damage modes, convex damage and concave damage, were observed. The dynamic response and damage mechanism were analyzed, and the results show that the different damage modes of the first wall will lead to different damage results of the second wall. Through dimensional analysis, a two-dimensional dimensionless number for internal blast analysis was suggested. Clear physical meanings are conveyed in the dimensionless number. After that, prediction of the damage modes was studied using the proposed dimensionless number. A damage mode map was plotted based on the two-dimensional dimensionless number, and an empirical equation for rapid prediction of damage mode of steel box wall under internal blast loading is proposed.

2019 ◽  
Vol 145 ◽  
pp. 106405 ◽  
Author(s):  
Ying Li ◽  
Lei Zhang ◽  
Dengbao Xiao ◽  
Tian Zhao ◽  
Zhipeng Du ◽  
...  

Author(s):  
Q. Dong ◽  
Y. Gu

Strain growth is a phenomenon observed in the elastic response of containment vessels subjected to internal blast loading. The local dynamic response of a containment vessel may become larger in a later stage than its response in the earlier stage. To further study the mechanism of strain growth, the effect of structural dimensions on strain growth of cylindrical vessels subjected to internal blast loading is thoroughly investigated in this paper. The dynamic response characteristics of eight cylindrical shells with different lengths and thicknesses are studied by finite element software LS-DYNA. It is shown that the structural dimension is a dominant influencing factor of strain growth.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Shujian Yao ◽  
Nan Zhao ◽  
Zhigang Jiang ◽  
Duo Zhang ◽  
Fangyun Lu

This paper aims at investigating the dynamic response of the steel box girder under internal blast loads through experiments and numerical study. Two blast experiments of steel box models under internal explosion were conducted, and then, the numerical methods are introduced and validated. The dynamic response process and propagation of the internal shock wave of a steel box girder under internal blast loading were investigated. The results show that the propagation of the internal shock wave is very complicated. A multi-impact effect is observed since the shock waves are restricted by the box. In addition, the failure modes and the influence of blast position as well as explosive mass were discussed. The holistic failure mode is observed as local failure, and there are two failure modes for the steel box girder's components, large plastic deformation and rupture. The damage features are closely related to the explosive position, and the enhanced shock wave in the corner of the girder will cause severe damage. With the increasing TNT mass, the crack diameter and the deformation degree are all increased. The longitudinal stiffeners restrict the damage to develop in the transverse direction while increase the crack diameter along the stiffener direction.


2015 ◽  
Vol 730 ◽  
pp. 55-64 ◽  
Author(s):  
Bo Yan ◽  
Yu Hui Zhou ◽  
Fei Liu ◽  
Zhi Gang Jiang

The RC beam damage induced by blast loading might lead to partial or total collapse of bridges. Improved understanding of damage mechanism of the RC beam under blast loading helps advances in the analysis and assessment of bridge damage effects. In this paper, the damage mechanism of prestressed reinforced concrete (PRC) T-beam under close-in blast loading is investigated numerically with a three-dimensional numerical model. The model is validated by comparing simulating results with the experimental data reported by other researchers. Intensive numerical simulations are then carried out to reproduce the damage process of the T-beam as well as to investigate the damage mode and mechanism of the PRC T-beam components.


Sign in / Sign up

Export Citation Format

Share Document