scholarly journals Roundness and positioning deviation prediction in single point incremental forming using deep learning approaches

2019 ◽  
Vol 11 (7) ◽  
pp. 168781401986446
Author(s):  
Sofien Akrichi ◽  
Amira Abbassi ◽  
Sabeur Abid ◽  
Noureddine Ben yahia

This article proposes a deep learning technique for the prevision of the geometric accuracy in single point incremental forming. Moreover, predicting geometric accuracy is one of the most crucial measures of part quality. Accordingly, roundness and positioning deviation are two indicators for measuring geometric accuracy and presenting two output variables. Two types of artificial intelligence learning approaches, that is, shallow learning and deep learning, are investigated and compared for forecasting geometrical accuracy in the single point incremental forming process. Therefore, the back-propagation neural network with one hidden layer is selected as the representative for shallow learning and deep belief network and stack autoencoder are chosen as the representatives for deep learning. Accurate prediction is closely related to the feature learning of single point incremental forming process parameters. The following six parameters were considered as input variables: sheet thickness, tool path direction, step depth, speed rate, feed rate, and wall angle. The results of these studies indicate that deep learning could be a powerful tool in the current search for geometric accuracy prediction in single point incremental forming. Otherwise, the deep learning approach shows the best performance prediction with shallow learning. In addition, the deep belief network model achieves superior performance accuracy for the prediction of roundness and position deviation in comparison with the stack autoencoder approach.

2014 ◽  
Vol 494-495 ◽  
pp. 497-501 ◽  
Author(s):  
Jin Han Wu ◽  
Qiu Cheng Wang

As there is no sufficient support between the single moving tool and fixture, the formed metal sheet is easy to bend in single point incremental forming (SPIF). Double sided incremental forming (DSIF) is proposed in which two tools are used on each side of the sheet to improve the components forming accuracy. Element finite method is introduced to simulate the forming process with both DSIF and SPIF toolpaths and the component geometric accuracies are compared. The simulation result shows the DSIF toolpaths can obtain better geometric accuracy than SPIF.


2021 ◽  
Vol 883 ◽  
pp. 217-224
Author(s):  
Yannick Carette ◽  
Marthe Vanhulst ◽  
Joost R. Duflou

Despite years of supporting research, commercial use of the Single Point Incremental Forming process remains very limited. The promised flexibility and lack of specific tooling is contradicted by its highly complex deformation mechanics, resulting in a process that is easy to implement but where workpiece accuracy is very difficult to control. This paper looks at geometry compensation as a viable control strategy to increase the accuracy of produced workpieces. The input geometry of the process can be compensated using knowledge about the deformations occurring during production. The deviations between the nominal CAD geometry and the actual produced geometry can be calculated in a variety of different ways, thus directly influencing the compensation. Two different alignment methods and three deviation calculation methods are explained in detail. Six combined deviation calculation methods are used to generate compensated inputs, which are experimentally produced and compared to the uncompensated part. All different methods are able to noticeably improve the accuracy, with the production alignment and closest point deviation calculation achieving the best results


2017 ◽  
Vol 867 ◽  
pp. 177-183 ◽  
Author(s):  
Vikrant Sharma ◽  
Ashish Gohil ◽  
Bharat Modi

Incremental sheet forming is one of the latest processes in sheet metal forming industry which has drawn attention of various researchers. It has shown improved formability compared to stamping process. Single Point Incremental Forming (SPIF) process requires only hemispherical tool and no die is required hence, it is a die-less forming process. In this paper experimental investigation on SPIF for Aluminium sheet has been presented. A groove test on Vertical Machining Centre has been performed. Factors (Step depth, Blank holder clamping area, Backing plate radius, Program strategy, Feed rate and Tool diameter) affecting the process are identified and experiments are carried out using fractional factorial design of experiments. Effect of the factors on fractured depth, forming time and surface finish have been analyzed using Minitab 17 software.


2021 ◽  
Vol 343 ◽  
pp. 04007
Author(s):  
Mihai Popp ◽  
Gabriela Rusu ◽  
Sever-Gabriel Racz ◽  
Valentin Oleksik

Single point incremental forming is one of the most intensely researched die-less manufacturing process. This process implies the usage of a CNC equipment or a serial robot which deforms a sheet metal with the help of a relatively simple tool that follows an imposed toolpath. As every cold metal forming process, besides the many given advantages it has also some drawbacks. One big drawback in comparison with other cold metal forming processes is the low accuracy of the deformed parts. The aim of this research is to investigate the sheet metal bending mechanism through finite element method analysis. The results shows that the shape of the retaining rings has a big influence over the final geometrical accuracy of the parts manufactured through single point incremental forming.


Author(s):  
Shalin Marathe ◽  
Harit Raval

Abstract The automobile, transportation and shipbuilding industries are aiming at fuel efficient products. In order to enhance the fuel efficiency, the overall weight of the product should be brought down. This requirement has increased the use of material like aluminium and its alloys. But, it is difficult to weld aluminium using conventional welding processes. This problem can be solved by inventions like friction stir welding (FSW) process. During fabrication of product, FSW joints are subjected to many different processes and forming is one of them. During conventional forming, the formability of the welded blanks is found to be lower than the formability of the parent blank involved in it. One of the major reasons for reduction in formability is the global deformation provided on the blank during forming process. In order to improve the formability of homogeneous blanks, Single Point Incremental Forming (SPIF) is found to be giving excellent results. So, in this work formability of the welded blanks is investigated during the SPIF process. Friction Stir Welding is used to fabricate the welded blanks using AA 6061 T6 as base material. Welded blanks are formed in to truncated cone through SPIF process. CNC milling machine is used as SPIF machine tool to perform the experimental work. In order to avoid direct contact between weld seam and forming tool, a dummy sheet was used between them. As responses forming limit curve (FLC), surface roughness, and thinning are investigated. It was found that use of dummy sheet leads to improve the surface finish of the formed blank. The formability of the blank was found less in comparison to the parent metal involved in it. Uneven distribution of mechanical properties in the welded blanks leads to decrease the formability of the welded blanks.


Sign in / Sign up

Export Citation Format

Share Document