groove test
Recently Published Documents


TOTAL DOCUMENTS

10
(FIVE YEARS 3)

H-INDEX

2
(FIVE YEARS 0)

Author(s):  
Gautam Kumar ◽  
Kuntal Maji

This article presents formability analysis of aluminium alloy 7075 thin sheets in single point incremental forming (SPIF) through prediction of forming limit curve (FLC) and maximum formable wall angle. Deformation instability method based on tool-sheet contact and non-contact zones in incremental forming was used for the prediction of limit strains for plane strain and equi-biaxial stretching strain path. FLC of the material was also determined experimentally, after measuring limit strains for deformed sheet through groove test for the process. Further, maximum forming wall angle of the material was determined for deformed sheet in a square pyramid shape. The theoretical limit strains predicted by deformation instability approach were compared to the experimental values. Theoretically, calculated limit strains were observed to be higher for plane strain path but approximately close for equi-biaxial strain path compared to experimental limit strains. The maximum formable wall was found to be 55˚ for the material in the process.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 810
Author(s):  
Haoran Zhang ◽  
Xingrong Chu ◽  
Shuxia Lin ◽  
Huawei Bai ◽  
Jiao Sun

The straight groove test of AZ31B magnesium alloy sheet by electric hot temperature-controlled incremental sheet forming (ISF) was conducted at different temperatures. The temperature influence on fracture depth, deformation force and strain distribution was investigated. It was found that the limit depth and major strain increased as the temperature rose and that the forming force decreased correspondingly. Furthermore, the fracture behavior changed from brittle fracture to ductile fracture. Considering the formability and surface wear comprehensively, the optimized forming temperature was determined to be 300 °C. The microstructure of the groove specimen was analyzed and the dynamic recrystallization (DRX) was considered to be the reason for the improved formability. The degree of DRX depended on the temperature and degree of deformation, which resulted in non-uniform distribution of hardness within the cross section of the groove specimen.


2019 ◽  
Vol 11 (1) ◽  
pp. 56-61
Author(s):  
Wei Yuan ◽  
Shengkai Mei ◽  
Song Li ◽  
Zhiwen Wang ◽  
Jie Yu ◽  
...  

Background: Grooves may inevitably occur on the surface of the friction pair caused by severe wear or residual stress, which will play an important role on the reliability of machine parts during operation. Objective: The effect of the micro-grooves perpendicular to sliding direction on the wear performance of the friction pairs should be studied. Method: Micro-grooves can be machined on discs of friction pairs using electrical discharge machining. On-line visual ferrograph method was used to monitor the wear process to research the wear rate changing characteristic. Profilemeter and metallurgical microscope were used to observe the wear scars. Results: Comparing to the non-groove test, i) in one-groove test, wear volume and rate were approximate the same, and the wear scar was smooth, ii) when the grooves more than 4, the test running-in stage will be obviously prolonged, particularly for the test with 8 grooves on the disc, the duration of running-in stage is 4 times than that without grooves on specimen, and the wear rate and volume increase significantly, and then decrease with fluctuation, iii) the abrasive wear can be avoid with the debris stagnating in the groove, however, fatigue wear will significantly emerge. Conclusion: Abrasive wear can be avoided and smooth running-in surfaces can be obtained with proper amount of initial radial micro-grooves.


Author(s):  
Takahiro Hayashi ◽  
Charles C. Kim ◽  
Kohki Kumagai ◽  
Mitsuhiro Goto ◽  
Shiro Otake

With the current practice in steel making and welding process control, thick and large structural components fabricated from the widely used steel materials such as SA-738 Grade B have good material properties sufficient enough to meet the increasing demand of avoiding a large amount of Post Weld Heat Treatment (PWHT) applications at both shop and site. The original rule in the ASME Boiler and Pressure Vessel Code (the Code), however, allows the exemption to mandatory PWHT for SA-738 Grade B by limiting the applicable material thickness equal to or less than 1 3/4 in. (44 mm) for Section III, Division 1, Subsection NE application. A Code Case was proposed with the purpose to increase the maximum thickness for the exemption of mandatory PWHT from 1 3/4 in. (44 mm) in the original rule to 2 3/8 in. (60 mm). In order to demonstrate the applicability of the PWHT exemption for material with increased thickness, material tests have been performed mainly for the test data required in the ASME Sec. III Div. 1 Subsection NE for three different heats of the plates. The tests performed also include additional data to those required by the Code, such as fracture toughness (KJc) test, microstructural observation, hardness test and oblique Y-groove test for SMAW process. All the tests results for the base materials and weld joints have shown sufficient rationale to increase the exemption thickness to mandatory PWHT to 2 3/8 in. (60 mm).


2017 ◽  
Vol 867 ◽  
pp. 177-183 ◽  
Author(s):  
Vikrant Sharma ◽  
Ashish Gohil ◽  
Bharat Modi

Incremental sheet forming is one of the latest processes in sheet metal forming industry which has drawn attention of various researchers. It has shown improved formability compared to stamping process. Single Point Incremental Forming (SPIF) process requires only hemispherical tool and no die is required hence, it is a die-less forming process. In this paper experimental investigation on SPIF for Aluminium sheet has been presented. A groove test on Vertical Machining Centre has been performed. Factors (Step depth, Blank holder clamping area, Backing plate radius, Program strategy, Feed rate and Tool diameter) affecting the process are identified and experiments are carried out using fractional factorial design of experiments. Effect of the factors on fractured depth, forming time and surface finish have been analyzed using Minitab 17 software.


Author(s):  
J. Karthikeyan ◽  
R. Varadharajan ◽  
K. Pitchaimuthu ◽  
Keyword(s):  

2015 ◽  
Vol 59 (5) ◽  
pp. 647-654 ◽  
Author(s):  
Myungjin Lee ◽  
Kyungmok Cho ◽  
Yongdeok Kim ◽  
Namhyun Kang

2010 ◽  
Vol 97-101 ◽  
pp. 126-129 ◽  
Author(s):  
Ghulam Hussain ◽  
Gao Lin ◽  
Nasir Hayat ◽  
Nameem Ullah Dar ◽  
Asif Iqbal

Straight groove test is a widely-used formability test in Single Point Incremental Forming (SPIF). This test does not cover all the forming aspects of SPIF process, however. In order to ascertain its legitimacy, two new tests covering necessary SPIF aspects are devised. The FLC of an aluminum sheet is determined using the newly proposed and straight groove tests. It is found that the straight groove test shows much lower formability than the new tests. Therefore, the employment of newly devised test(s) is proposed for the determination of precise formability limits.


2007 ◽  
Vol 129 (2) ◽  
pp. 398-406 ◽  
Author(s):  
Dara W. Childs ◽  
Matthew Graviss ◽  
Luis E. Rodriguez

Test results are presented for a smooth seal and three centrally grooved seals that are representative of buffered-flow oil seals in centrifugal compressors. The seals are short (L∕D≅0.21), with a diameter of 117mm and a nominal radial clearance of 0.085mm, netting the clearance-to-radius ratio 0.0015. The grooves have groove depth to clearance ratios (Dg∕Cr) of 5, 10, and 15. Test conditions include three shaft speeds from 4000rpm to 10,000rpm, three inlet oil pressures from 24bar to 70bar, and seal eccentricity ratios from 0 (centered) to 0.7. Dynamic results include stiffness, damping, and added-mass coefficients; static results include stator position, attitude angles, and seal leakage. Stiffness, damping, and mass coefficients plus leakage are compared for the seal geometries. Results show that all rotordynamic coefficients consistently decrease with increasing seal groove depths, and seal leakage is largely unchanged. Comparisons are also made between experimental results and predictions from a computer program based on a Reynolds + energy equation model. The model includes the assumption that a groove is large enough to create separate lands within the seal, creating a zero or negligible pressure perturbation within the groove. Test results show that even the deepest groove depth tested is not deep enough to satisfy this assumption.


Author(s):  
M. L. Macia ◽  
D. P. Fairchild ◽  
J. Y. Koo ◽  
N. V. Bangaru

To reduce the cost of long distance gas transmission, high strength pipeline steels are being developed. Implementation of high strength pipeline materials requires the avoidance of hydrogen cracking during field girth welding. A study of hydrogen cracking in X120 girth welds has been conducted. Cracking resistance of both the weld metal and heat affected zone (HAZ) were investigated. The laboratory tests included the controlled thermal severity (CTS) test, the WIC test and the Y-groove test. In addition, multi-pass plate welds and full pipe welds were completed and examined for the presence of hydrogen cracks. The suitability of each test method for predicting cracking in X120 girth welds is determined. The morphology of hydrogen cracks in X120 girth welds is described, and the conditions necessary to prevent hydrogen cracking are identified. Following the laboratory studies, construction of X120 pipelines without cracking was demonstrated through a 1.6 km field trial.


Sign in / Sign up

Export Citation Format

Share Document