Experimental Investigation of Single Point Incremental Forming of Aluminum Sheet in Groove Test

2017 ◽  
Vol 867 ◽  
pp. 177-183 ◽  
Author(s):  
Vikrant Sharma ◽  
Ashish Gohil ◽  
Bharat Modi

Incremental sheet forming is one of the latest processes in sheet metal forming industry which has drawn attention of various researchers. It has shown improved formability compared to stamping process. Single Point Incremental Forming (SPIF) process requires only hemispherical tool and no die is required hence, it is a die-less forming process. In this paper experimental investigation on SPIF for Aluminium sheet has been presented. A groove test on Vertical Machining Centre has been performed. Factors (Step depth, Blank holder clamping area, Backing plate radius, Program strategy, Feed rate and Tool diameter) affecting the process are identified and experiments are carried out using fractional factorial design of experiments. Effect of the factors on fractured depth, forming time and surface finish have been analyzed using Minitab 17 software.

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Mingshun Yang ◽  
Zimeng Yao ◽  
Yan Li ◽  
Pengyang Li ◽  
Fengkui Cui ◽  
...  

An excessive thickness-reducing ratio of the deformation zone in single point incremental forming of the metal sheet process has an important influence on the forming limit. Prediction of the deformation zone thickness is an important approach to control the thinning ratio. Taking the 1060 aluminum as the research object, the principle of thickness deformation in the single point incremental forming process was analyzed; the finite element model was established using ABAQUS. A formula with high accuracy to predict the deformation zone thickness was fitted with the simulation results, and the influences of process parameters, such as tool diameter, step down, feeding speed, sheet thickness, and forming angle, on thinning ratio were analyzed. The accuracy of the finite element simulation was verified by experiment. A method to control the thinning rate by changing the forming trajectory was proposed. The results showed that the obtained value by using the fitted formula is closer to the experimental results than that obtained by the sine theorem. The thinning rate of the deformation zone increases with the increase of tool diameter, forming angle, and sheet thickness and decreases with the increase of step down, while the feeding speed had no significant effect on the thinning ratio. The most important factor of the thinning ratio is the forming angle, and the thinning ratio can be effectively reduced by using the forming trajectory with a uniformly distributed pressing point.


Author(s):  
Amirahmad Mohammadi ◽  
Hans Vanhove ◽  
Albert Van Bael ◽  
Marc Seefeldt ◽  
Joost R. Duflou

This study examines the possibility of applying lasers for the formation of laser-affected bands in hardenable steel sheets, with a specific focus on how the formation of these hardened bands can improve the accuracy of the single point incremental forming process (SPIF). For this purpose, the process parameters for the hardening process have been chosen using finite-element (FE) modeling. The results of the modeling have been validated by temperature field measurements obtained from IR camera observations. The microstructural analysis of the laser-affected zones has been performed using optical microscopy (OM) and scanning electron microscopy (SEM). These investigations confirm a phase transformation to a martensitic structure during laser scanning, and microhardness (HV0·1) results show a hardness increase by a factor of about three in the laser-affected region in comparison to that of the base metal (BM). Finally, using a laser assisted single point incremental forming (LASPIF) setup, hardened bands have been generated for preprocessing and intermediate processing during the different phases of a SPIF procedure. Geometric accuracy studies show that appropriate use of hard martensitic bands can increase the process accuracy through significantly reduction of an unwanted sheet deformation, and has the potential to eliminate the need for a backing plate.


2013 ◽  
Vol 554-557 ◽  
pp. 1265-1272 ◽  
Author(s):  
Riadh Bahloul ◽  
Henia Arfa ◽  
Hedi Belhadj Salah

Single point incremental forming (SPIF) is a modern method of forming sheet metal, where parts can be formed without the use of dedicated dies. The ability of SPIF to form a part is based on various forming parameters. Previous work was not accomplished with the help of design of experiments (DOE), thus reducing the number of parameters varied at any time. This paper presents a Box-Behnken experimental design, which develops the numerical plan, formalizes the forming parameters critical in SPIF and analyse data. The most critical factors affecting SPIF were found to be wall inclination angle, incremental step size, material thickness and tool size. The main effects of these parameters on the quality of the formed parts were studied in detail. Actually this work aims to “optimize the thinning rate and the maximum force by considering the tool diameter and the vertical pitch as unknown parameters for two different wall angles and thicknesses”. To this purpose, an optimization procedure based on the use of response surface methodology (RSM) and genetic algorithms (GA) have been proposed for application to find the optimum solutions. Finally, it demonstrated that the developed methods can solve high non-linear problems successfully. Associated plots are shown to be very efficient for a quick localization of the region of the search space containing the global optimum values of the SPIF parameters.


2010 ◽  
Vol 97-101 ◽  
pp. 126-129 ◽  
Author(s):  
Ghulam Hussain ◽  
Gao Lin ◽  
Nasir Hayat ◽  
Nameem Ullah Dar ◽  
Asif Iqbal

Straight groove test is a widely-used formability test in Single Point Incremental Forming (SPIF). This test does not cover all the forming aspects of SPIF process, however. In order to ascertain its legitimacy, two new tests covering necessary SPIF aspects are devised. The FLC of an aluminum sheet is determined using the newly proposed and straight groove tests. It is found that the straight groove test shows much lower formability than the new tests. Therefore, the employment of newly devised test(s) is proposed for the determination of precise formability limits.


2018 ◽  
Vol 21 (1) ◽  
pp. 108 ◽  
Author(s):  
Aqeel Sabree Bedan ◽  
Halah Ali Habeeb

Incremental forming is a flexible sheet metal forming process which performed by utilizes simple tools to locally deform a sheet of metal along a predefined tool path without using of dies. One limitations of single point incremental forming (SPIF) process is the error occur between the CAD design and the product profile. This work presents the single point incremental forming process for produced pyramid geometry and studied the effect of tool geometry, tool diameter, wall angle, and spindle speed on the dimensional accuracy. Three geometries of forming tools were used in experimental work: ball end tool, hemispherical tool, and flat with round corner tool. The sheet material used was pure Aluminum (Al 1050) with thickness of (0.9 mm). The experimental tests in this work were done on the computer numerical control (CNC) vertical milling machine. The products dimensions were measured by utilized the dimensional sensor measuring instrument. The extracted results from the single point incremental forming process indicated the best acceptance between the CAD profile and product profile was found with the ball end tool and diameter of (10 mm), wall angle (50°) and the rotational speed of the tool was (800 rpm).


2019 ◽  
Vol 14 (2) ◽  
pp. 1-13
Author(s):  
Aqeel S Sabree Bedan ◽  
Halah Ali H Habeeb

Incremental forming is a flexible sheet metal forming process which is performed by utilizing simple tools to locally deform a sheet of metal along a predefined tool path without using of dies. This work presents the single point incremental forming process for producing pyramid geometry and studies the effect of tool geometry, tool diameter, and spindle speed on the residual stresses. The residual stresses were measured by ORIONRKS 6000 test measuring instrument. This instrument was used with four angles of (0º,15º,30º, and 45º) and the average value of residual stresses was determined, the value of the residual stress in the original blanks was (10.626 MPa). The X-ray diffraction technology was used to measure the residual stresses. The sheet material used was Aluminum alloy (AL1050) with thickness of (0.9 mm). The experimental tests in this work were done on the computer numerical control (CNC) vertical milling machine. The extracted results from the single point incremental forming process were analyzed using analysis of variance (ANOVA) to predict the effect of forming parameters on the residual stresses. The optimum value of the residual stresses (55.024 MPa) was found when using the flat end with round corner tool and radius of (3 mm), wall angle of (55°) and a rotational speed of the tool of (800 rpm). The minimum value of the residual stresses (24.389MPa) was found when using hemispherical tool with diameter of (12 mm), wall angle of (45°) and a rotational speed of the tool of (800 rpm).  


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7263
Author(s):  
Sherwan Mohammed Najm ◽  
Imre Paniti ◽  
Tomasz Trzepieciński ◽  
Sami Ali Nama ◽  
Zsolt János Viharos ◽  
...  

When using a unique tool with different controlled path strategies in the absence of a punch and die, the local plastic deformation of a sheet is called Single Point Incremental Forming (SPIF). The lack of available knowledge regarding SPIF parameters and their effects on components has made the industry reluctant to embrace this technology. To make SPIF a significant industrial application and to convince the industry to use this technology, it is important to study mechanical properties and effective parameters prior to and after the forming process. Moreover, in order to produce a SPIF component with sufficient quality without defects, optimal process parameters should be selected. In this context, this paper offers insight into the effects of the forming tool diameter, coolant type, tool speed, and feed rates on the hardness of AA1100 aluminium alloy sheet material. Based on the research parameters, different regression equations were generated to calculate hardness. As opposed to the experimental approach, regression equations enable researchers to estimate hardness values relatively quickly and in a practicable way. The Relative Importance (RI) of SPIF parameters for expected hardness, determined with the partitioning weight method of an Artificial Neural Network (ANN), is also presented in the study. The analysis of the test results showed that hardness noticeably increased when tool speed increased. An increase in feed rate also led to an increase in hardness. In addition, the effects of various greases and coolant oil were studied using the same feed rates; when coolant oil was used, hardness increased, and when grease was applied, hardness decreased.


Sign in / Sign up

Export Citation Format

Share Document