Study of geometrical defects of free-form surface machined using neural network

2021 ◽  
Vol 13 (11) ◽  
pp. 168781402110609
Author(s):  
Benattia Bloul ◽  
Hélène Chanal ◽  
Benaoumeur Aour ◽  
Nargess Chtioui

The manufacture of total hip arthroplasty (THA) requires the control of the quality of free form surfaces. In fact, the polyethylene insert is deformed to fit the overall geometry of the femoral part, which has an impact on the quality of the contact. In this paper, we propose a method for evaluating the defects of complex forms. The originality of the approach is the use of artificial intelligence to position the cloud of measured points, obtained with a three-dimensional measuring machine equipped with a contactless sensor, with regard to the 3D CAD model of the THA. The artificial intelligence algorithm used is based on neural networks that are trained using a virtual positioning realized with 3D CAD software. Finally, the difference between the positioned point cloud and the CAD model allows us to evaluate the shape defect of the measured THA surface. We found that the error of the proposed method is at the vicinity of micron scale.

2021 ◽  
Vol 4 (2) ◽  
pp. 13-20
Author(s):  
Mehmood Ahmad ◽  
Sheharyar Nasir ◽  
Zia Ur Rahman ◽  
Shuaib Salamat ◽  
Umar Sajjad ◽  
...  

A rapidly advancing lean production industry demands quick manufacturing solutions with greater precision and accuracy. This paper proposes a framework for the accurate quantification of a die-casted wing using laser scanning and reverse engineering technique. In this technique, the wing upper and lower surfaces are scanned using a Coordinate Measuring Machine (CMM). This scanned data is then imported into CAD software to generate the surface using Free Form Reverse Engineering (FFRE). The model fitness test patronizes the curve fitting used for the surface generation. The generated surface and the original 3D CAD model are investigated using deviation analysis for inaccuracies originating due to manufacturing and data acquisition. The wing is further analyzed by the point data to 3D CAD model deviation analysis. The methodology adopted significantly minimizes the data acquisition and data processing error allowing deviation to be solely traced back to the manufacturing technique.


Author(s):  
C Bradley ◽  
G W Vickers ◽  
M Milroy

A software package for the reverse engineering of surface forms commonly found in manufactured objects is presented. An object's surface is digitized using a three-dimensional, laser-based scanner that produces accurate and copious data files. Complex surface forms are reconstructed by interactively segmenting the multiple-surface patches, invoking the appropriate surface modelling routine and transferring the resulting surfaces to a CAD package via a standard IGES entity. Examples of the accuracy of the laser scanner data, and software algorithms for modelling planes, cylinders, cones and spheres, are presented by performing comparisons with results generated by a coordinate measuring machine. The paper concentrates on the novel software process to model the principal quadric forms; however, the program's capabilities do extend to free-form surfaces.


2021 ◽  
Vol 11 (4) ◽  
pp. 145
Author(s):  
Nenad Bojcetic ◽  
Filip Valjak ◽  
Dragan Zezelj ◽  
Tomislav Martinec

The article describes an attempt to address the automatized evaluation of student three-dimensional (3D) computer-aided design (CAD) models. The driving idea was conceptualized under the restraints of the COVID pandemic, driven by the problem of evaluating a large number of student 3D CAD models. The described computer solution can be implemented using any CAD computer application that supports customization. Test cases showed that the proposed solution was valid and could be used to evaluate many students’ 3D CAD models. The computer solution can also be used to help students to better understand how to create a 3D CAD model, thereby complying with the requirements of particular teachers.


2011 ◽  
Vol 287-290 ◽  
pp. 2805-2809
Author(s):  
Ming Yu Huang ◽  
Xiu Juan Wu ◽  
Zhong Shi Jia ◽  
Hong Jun Ni ◽  
Jing Jing Lv ◽  
...  

Data acquisition and model reconstruction of free-form surfaces with holes were been studied, based on coordinate measuring machines. First, the structural process of the parts was analyzed, the method of combinate contact measurement with non-contact measurement were used to get point cloud; Then the point cloud were been preprocessed, feature curve extracted and solid modeled; Finally, the restructure model was been quality assessed and accuracy assessed. Using the measurement of combinated contact and non-contact can also meet both the precision requirement of key part and the fast reconstruction requirement of non-critical part, which has great significance on that part to fast and accurate reconstruction.


Author(s):  
Yueping Chen ◽  
Naiqi Shang

Abstract Coordinate measuring machines (CMMs) play an important role in modern manufacturing and inspection technologies. However, the inspection process of a CMM is recognized as time-consuming work. The low efficiency of coordinate measuring machines has given rise to new inspection strategies and methods, including path optimization. This study describes the optimization of an inspection path on free-form surfaces using three different algorithms: an ant colony optimization algorithm, a genetic algorithm, and a particle swarm optimization algorithm. The optimized sequence of sampling points is obtained in MATLAB R2020b software and tested on a Leitz Reference HP Bridge Type Coordinate Measuring Machine produced by HEXAGON. This study compares the performance of the three algorithms in theoretical and practical conditions. The results demonstrate that the use of the three algorithms can result in a collision-free path being found automatically and reduce the inspection time. However, owing to the different optimization methodologies, the optimized processes and optimized times of the three algorithms, as well as the optimized paths, are different. The results indicate that the ant colony algorithm has better performance for the path optimization of free-form surfaces.


2017 ◽  
Vol 24 (2) ◽  
pp. 303-312 ◽  
Author(s):  
Artur Wójcik ◽  
Magdalena Niemczewska-Wójcik ◽  
Jerzy Sładek

AbstractThe paper presents the problem of assessing the accuracy of reconstructing free-form surfaces in the CMM/CAD/CAM/CNC systems. The system structure comprises a coordinate measuring machine (CMM) PMM 12106 equipped with a contact scanning probe, a 3-axis Arrow 500 Vertical Machining Center, QUINDOS software and Catia software. For the purpose of surface digitalization, a radius correction algorithm was developed. The surface reconstructing errors for the presented system were assessed and analysed with respect to offset points. The accuracy assessment exhibit error values in the reconstruction of a free-form surface in a range of ± 0.02 mm, which, as it is shown by the analysis, result from a systematic error.


2011 ◽  
Vol 346 ◽  
pp. 83-89
Author(s):  
Xiao Yong Li ◽  
Zhi Gang Zhang

Project teams face ever increasing pressure to deliver projects as quickly as possible. To meet these demands, contractors are faced with the need to explore various construction strategies in order to meet delivery dates, and to assure themselves as to the achievability and quality of construction building. Various visual representations of construction building, i.e. 3D CAD, can assist with these tasks of identifying effective construction program. Such visual representations aid communication amongst project staff and facilitate brain-storming, and, implemented well they can provide clear, fast, and multi-dimensional feedback to the project team. In this paper, we describe aspects of our work which is directed at formulating a dynamic visualization environment that links 3D CAD. Requirements of such an environment include quickness, treating scale, working at multiple levels of detail, dealing with design variability, and realistic representation of the work. The applicability of the system is demonstrated by applying it to various examples. The results show that the system can be effectively used for generating the 3D CAD model of construction building.


2010 ◽  
Vol 447-448 ◽  
pp. 258-262 ◽  
Author(s):  
Takashi Sato ◽  
Yong Bo Wu ◽  
Wei Min Lin ◽  
Kunio Shimada

The finishing process of a metal mold depends on the hand work of experts by using a whetstone tool in many cases. This is because it is difficult to treat the three-dimensional configuration, such as free-form surfaces and convex and concave configurations. To overcome this difficulty, we propose a dynamic magnetic field assisted finishing using magnetic compound fluid (MCF) for three-dimensional configurations. In this paper, we demonstrate the MCF slurry (MCF mixed abrasive and cellulose fiber in) under dynamic magnetic field shows the high form restoration and generates the high normal force compared to that under static magnetic field; resulting in shows the high finishing performance. Moreover, we compare and discuss the surface roughness and form accuracy under both static and dynamic magnetic fields against three-dimensional configuration made of high hardness non-ferrous mold steel HPM75, which is used for plastic injection mold.


Mechanik ◽  
2017 ◽  
Vol 90 (11) ◽  
pp. 1035-1037
Author(s):  
Marek Magdziak ◽  
Andrzej Kawalec

The possible reason for the incorrect form deviations calculated using an algorithm available in the selected software of coordinate measuring machine was identified. This method is available in the Calypso software and it is based on local deviations calculated at nominal points. The analysis was made for the selected examples of free-form surfaces. There are presented the results of numerical investigations based on simulations of coordinate measurements of selected object. The measured points were generated with assumed values of scatter in relation to the nominal profiles of the analyzed product. The simulations were made using 3 selected methods for computing the form deviations and various distances between the measured points. In order to verify the results of simulation studies there were made experimental investigations. The experimental investigations were done using selected coordinate measuring system and chosen measurement parameters. The results of performed measurements confirm the simulation results.


Sign in / Sign up

Export Citation Format

Share Document