Three-dimensional measurement of specular free-form surfaces with a structured-lighting reflection technique

Author(s):  
Denis Perard ◽  
Juergen Beyerer
2014 ◽  
Vol 664 ◽  
pp. 263-267
Author(s):  
Feng Lu ◽  
Ning Li ◽  
Xiao Fei Zhang

To deal with the lack of accurate and efficient inspection methods in complex free-form surfaces, three-dimensional measurement method based on the optical measurement and computer image processing technology was proposed. It adopted laser scanning technology to get point clouds of free-form surface. Used rapid measurement software to inspect precision of point cloud& CAD model. What could be the cause of machining errors was analyzed. 3D deviation inspection of complex surfaces was applied by an artifact. Detected the machining error of an important section, and outputted test report. This research provides a convenient and swift method for the inspection of free-form surface and processing quality control.


2017 ◽  
Author(s):  
Antonio M. Bird ◽  
◽  
Katherine A. Kelker ◽  
Elizabeth S. Brogden ◽  
Jeff Glazner ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chanho Moon ◽  
Kotaro Yamasaki ◽  
Yoshihiko Nagashima ◽  
Shigeru Inagaki ◽  
Takeshi Ido ◽  
...  

AbstractA tomography system is installed as one of the diagnostics of new age to examine the three-dimensional characteristics of structure and dynamics including fluctuations of a linear magnetized helicon plasma. The system is composed of three sets of tomography components located at different axial positions. Each tomography component can measure the two-dimensional emission profile over the entire cross-section of plasma at different axial positions in a sufficient temporal scale to detect the fluctuations. The four-dimensional measurement including time and space successfully obtains the following three results that have never been found without three-dimensional measurement: (1) in the production phase, the plasma front propagates from the antenna toward the end plate with an ion acoustic velocity. (2) In the steady state, the plasma emission profile is inhomogeneous, and decreases along the axial direction in the presence of the azimuthal asymmetry. Furthermore, (3) in the steady state, the fluctuations should originate from a particular axial position located downward from the helicon antenna.


Sign in / Sign up

Export Citation Format

Share Document