scholarly journals Micropolar ferrofluid flow via natural convective about a radiative isoflux sphere

2021 ◽  
Vol 13 (2) ◽  
pp. 168781402199439
Author(s):  
Saber EL-Kabeir ◽  
Ahmed Rashad ◽  
Waqar Khan ◽  
Zeinab Mahmoud Abdelrahman

Current investigation scrutinizes the magnetohydrodynamic (MHD) natural convection flow of micropolar ferrofluid across an isoflux sphere with the impacts of thermal radiation and partial slip. Cobalt-nanoparticles with kerosene as the base fluid are considered. The governing partial differential conservation equations and convenient boundary conditions are rendered into a nondimensional form. The finite difference method (FDM) is then applied to determine the solution of a collection of resultant equations. The outcomes obtained by FDM have also compared with cited investigation. Illustrations describing influences of prominent parameters which provides physical interpretations of velocity, angular velocity, and temperature fields as well as the skin friction coefficient and Nusselt number are examined in detail with the help of graphical representations. This investigation determined that the skin-friction coefficient and heat transport rate reduced along with augmentation in the magnetic force and micropolar parameter, while opposite performance is adhered with elevating in the thermal radiation. Moreover, the boosted nanoparticle volume fraction reduced the skin friction coefficient and improved the Nusselt number.

2020 ◽  
Vol 9 (3) ◽  
pp. 168-176
Author(s):  
E. R. EL-Zahar ◽  
M. A. Mansour ◽  
A. M. Rashad ◽  
Z. M. A. Abdelrahman ◽  
A. M. A. EL-Hakiem

Current investigation characterizes the flow and heat transmission of magneto-micropolar nanofluid through a non-isothermal wedge. The base-fluid as water and micropolar nanofluid as Copper or Alumina-nanoparticles are considered. Applying the similarity transformations along with non-dimensional quantities the formulated equations of the investigation are transmuted into a system of non-linear ODEs with a collection of convenient boundary conditions. The fourth-order finite difference method (FFDM) is then applied to determine the solution of a collection of resultant equations. The outcomes obtained by FFDM have also compared with cited works. Illustrations describing influences of prominent parameters which provide physical interpretations of temperature, micro rotation and velocity fields are examined in detail with the help of graphical representations. Both the skin friction coefficient and Nusselt number are computed and exhibited through tabular forms. This investigation determined that the skin-friction coefficient and heat transport rate improved along with augmentation in the magnetic force. micropolar parameter and the nanoparticle volume fraction augmented the Both skin friction coefficient and Nusselt number.


2010 ◽  
Vol 2010 ◽  
pp. 1-20 ◽  
Author(s):  
Mostafa Mahmoud ◽  
Shimaa Waheed

A theoretical analysis is performed to study the flow and heat transfer characteristics of magnetohydrodynamic mixed convection flow of a micropolar fluid past a stretching surface with slip velocity at the surface and heat generation (absorption). The transformed equations solved numerically using the Chebyshev spectral method. Numerical results for the velocity, the angular velocity, and the temperature for various values of different parameters are illustrated graphically. Also, the effects of various parameters on the local skin-friction coefficient and the local Nusselt number are given in tabular form and discussed. The results show that the mixed convection parameter has the effect of enhancing both the velocity and the local Nusselt number and suppressing both the local skin-friction coefficient and the temperature. It is found that local skin-friction coefficient increases while the local Nusselt number decreases as the magnetic parameter increases. The results show also that increasing the heat generation parameter leads to a rise in both the velocity and the temperature and a fall in the local skin-friction coefficient and the local Nusselt number. Furthermore, it is shown that the local skin-friction coefficient and the local Nusselt number decrease when the slip parameter increases.


Author(s):  
Saeed Dinarvand ◽  
Reza Hosseini ◽  
Ioan Pop

Purpose – The current study is mainly motivated by the need to the development of the transient MHD mixed convection stagnation-point flow and heat transfer of an electrically conducting nanofluid over a vertical permeable stretching/shrinking sheet by means of Tiwari-Das nanofluid model. The purpose of this paper is to investigate the effects of the parameters governing the flow i.e. the nanoparticle volume fraction, the unsteadiness parameter, the magnetic parameter, the wall transpiration parameter, the mixed convection parameter and the velocity ratio parameter on dimensionless velocity and temperature distributions, skin friction coefficient and local Nusselt number. Design/methodology/approach – The mathematical model has been formulated based on Tiwari-Das nanofluid model. Three different types of water-based nanofluid with copper, aluminum oxide (alumina) and titanium dioxide (titania) as nanoparticles are considered in this investigation. Using appropriate similarity variables, the governing equations are transformed into nonlinear ordinary differential equations in the dimensionless stream function, which is solved analytically by the well-know homotopy analysis method. The present simulations agree closely with the previous studies in the especial cases. Findings – The results show that by increasing the nanoparticle volume fraction, the unsteadiness parameter, the magnetic parameter, the wall transpiration parameter, the mixed convection parameter or reducing the velocity ratio parameter, the skin friction coefficient enhances. Furthermore, the local Nusselt number enhances with different rates by increasing the nanoparticle volume fraction, the unsteadiness parameter, the magnetic parameter, the wall transpiration parameter, the mixed convection parameter and the velocity ratio parameter. Besides, the skin friction coefficient and the local Nusselt number are highest for copper-water nanofluid compared to the alumina-water and titania-water nanofluids. Originality/value – Tiwari-Das nanofluid model has not been applied for the flow with these characteristics as mentioned in the paper. A comprehensive survey on boundary layer behavior has been presented. There are few studies regarding as analysis on thermal and hydrodynamics boundary layer. All plots presented in the paper are new and did not report in any other study. The effects of the parameters governing the flow on skin friction coefficient and local Nusselt number have been illustrated in the paper while there are some conflicts with previous published article that have been interpreted in details in the paper.


2017 ◽  
Vol 72 (9) ◽  
pp. 833-842 ◽  
Author(s):  
Pradeep Ganapathi Siddheshwar ◽  
Meenakshi Nerolu ◽  
Igor Pažanin

AbstractFlow of a Newtonian nanoliquid due to a curved stretching sheet and heat transfer in it is studied. The governing nonlinear partial differential equations are reduced to nonlinear ordinary differential equations with variable coefficients by using a similarity transformation. The flow characteristics are studied using plots of flow velocity components and the skin-friction coefficient as a function of suction-injection parameter, curvature, and volume fraction. Prescribed surface temperature and prescribed surface heat flux are considered for studying the temperature distribution in the flow. The thermophysical properties of 20 nanoliquids are considered in the investigation by modeling them through the use of phenomenological laws and mixture theory. The results of the corresponding problem involving a plane stretching sheet is obtained as a particular case of those obtained in the present paper. Skin friction coefficient and Nusselt number are evaluated and it is observed that skin friction coefficient decreases with concentration of nanoparticles in the absence as well as presence of suction where as Nusselt number increases with increase in concentration of nanoparticles in a dilute range.


2014 ◽  
Vol 136 (10) ◽  
Author(s):  
Kaustav Pradhan ◽  
Subho Samanta ◽  
Abhijit Guha

The natural convective boundary layer flow of a nanofluid over an isothermal horizontal plate is studied analytically. The model used for the nanofluid accounts for the effects of Brownian motion and thermophoresis. The analysis shows that the velocity, temperature, and nanoparticle volume fraction profiles in the respective boundary layers depend not only on the Prandtl number (Pr) and Lewis number (Le) but also on three additional dimensionless parameters: the Brownian motion parameter Nb, the buoyancy ratio parameter Nr and the thermophoresis parameter Nt. The velocity, temperature, and nanoparticle volume fraction profiles for the nanofluid are found to have a weak dependence on the values of Nb, Nr, and Nt. The effect of the above-mentioned parameters on the local skin-friction coefficient and Nusselt number has been studied extensively. It has been observed that as Nr increases, the local skin-friction coefficient decreases whereas local Nusselt number remains almost constant. As Nb or Nt increases, the local skin-friction coefficient increases whereas the local Nusselt number decreases.


2015 ◽  
Vol 93 (11) ◽  
pp. 1365-1374 ◽  
Author(s):  
Irfan Mustafa ◽  
Tariq Javed ◽  
Abid Majeed

In this study, magnetohydrodynamic effects on the mixed convection flow of nanofluid particles, namely, Cu (copper) and Al2O3 (alumina) near a stagnation region over a vertical plate in the presence of viscous dissipation is investigated. The governing equations of the nanofluid flow model proposed by Tiwari and Das (Int. J. Heat Mass Transfer, 50, 2002 (2007). doi:10.1016/j.ijheatmasstransfer.2006.09.034) are converted into a dimensionless nonlinear system of ordinary differential equations by using the similarity transformation. The solution of the resulting equations is obtained numerically by using a very efficient implicit scheme known as the Keller box method. A comparison with previous studies is shown in tabular form and excellent agreement is found. The effects of pertinent parameters like magnetic parameter M, Eckert number Ec, and volume fraction parameter ϕ on velocity, temperature, skin friction coefficient, and local Nusselt number with fixed value of Prandtl number Pr = 6.2 are shown graphically and discussed. These results show that the skin friction coefficient increases for both nanoparticles in assisting and opposing flow cases because of increasing absolute values of M and Ec, on the other hand heat transfer rate is enhanced in the opposing flow case and reduced in the assisting flow case. The values of skin friction coefficient for both nanoparticles, namely, Cu and Al2O3 increase with the increase in volume fraction parameter ϕ in both assisting and opposing flow cases and Cu has a higher value than Al2O3. The same behavior is observed for local Nusselt number in opposing flow, but in assisting flow the value of local Nusselt number decreases with the increase of ϕ in the presence of magnetic and viscous dissipation effects and Cu has a smaller value than Al2O3.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
J. Bouslimi ◽  
M. Omri ◽  
R. A. Mohamed ◽  
K. H. Mahmoud ◽  
S. M. Abo-Dahab ◽  
...  

In this article, the effect of electromagnetic force with the effect of thermal radiation on the Williamson nanofluid on a stretching surface through a porous medium was studied considering the effect of both heat generation/absorption and Joule heating. On the other hand, the effect of Brownian motion and thermophoresis coefficients was considered. The system of nonlinear partial differential equations governing the study of fluid flow has transformed into a system of ordinary differential equations using similarity transformations and nondimensional variables which were subsequently solved numerically by using the Rung-Kutta fourth-order method with shooting technique. Moreover, the effect of the resulting physical parameters on the distributions of velocity, temperature, and concentration of nanoparticles has been studied by using graphical forms with an interest in providing physical meanings to each parameter. Finally, special diagrams were made to explain the study of the effect of some physical parameters on the skin friction coefficient and the local Nusselt number; these results led to reinforcement in the values of the skin friction coefficient for the increased values of the magnetic field and the Darcy number while the effect on the local Nusselt number by thermal radiation as well as the heat generation/absorption coefficients became negative.


Author(s):  
R Tabassum ◽  
Rashid Mehmood ◽  
O Pourmehran ◽  
NS Akbar ◽  
M Gorji-Bandpy

The dynamic properties of nanofluids have made them an area of intense research during the past few decades. In this article, flow of nonaligned stagnation point nanofluid is investigated. Copper–water based nanofluid in the presence of temperature-dependent viscosity is taken into account. The governing nonlinear coupled ordinary differential equations transformed by partial differential equations are solved numerically by using fourth-order Runge–Kutta–Fehlberg integration technique. Effects of variable viscosity parameter on velocity and temperature profiles of pure fluid and copper–water nanofluid are analyzed, discussed, and presented graphically. Streamlines, skin friction coefficients, and local heat flux of nanofluid under the impact of variable viscosity parameter, stretching ratio, and solid volume fraction of nanoparticles are also displayed and discussed. It is observed that an increase in solid volume fraction of nanoparticles enhances the magnitude of normal skin friction coefficient, tangential skin friction coefficient, and local heat flux. Viscosity parameter is found to have decreasing effect on normal and tangential skin friction coefficients whereas it has a positive influence on local heat flux.


Author(s):  
Rajesh Vemula ◽  
A J Chamkha ◽  
Mallesh M. P.

Purpose – The purpose of this paper is to focus on the numerical modelling of transient natural convection flow of an incompressible viscous nanofluid past an impulsively started semi-infinite vertical plate with variable surface temperature. Design/methodology/approach – The problem is governed by the coupled non-linear partial differential equations with appropriate boundary conditions. A robust, well-tested, Crank-Nicolson type of implicit finite-difference method, which is unconditionally stable and convergent, is used to solve the governing non-linear set of partial differential equations. Findings – The local and average values of the skin-friction coefficient (viscous drag) and the average Nusselt number (the rate of heat transfer) decreased, while the local Nusselt number increased for all nanofluids, namely, aluminium oxide-water, copper-water, titanium oxide-water and silver-water with an increase in the temperature exponent m. Selecting aluminium oxide as the dispersing nanoparticles leads to the maximum average Nusselt number (the rate of heat transfer), while choosing silver as the dispersing nanoparticles leads to the minimum local Nusselt number compared to the other nanofluids for all values of the temperature exponent m. Also, choosing silver as the dispersing nanoparticles leads to the minimum skin-friction coefficient (viscous drag), while selecting aluminium oxide as the dispersing nanoparticles leads to the maximum skin-friction coefficient (viscous drag) for all values of the temperature exponent m. Research limitations/implications – The Brinkman model for dynamic viscosity and Maxwell-Garnett model for thermal conductivity are employed. The governing boundary layer equations are written according to The Tiwari-Das nanofluid model. A range of nanofluids containing nanoparticles of aluminium oxide, copper, titanium oxide and silver with nanoparticle volume fraction range less than or equal to 0.04 are considered. Practical implications – The present simulations are relevant to nanomaterials thermal flow processing in the chemical engineering and metallurgy industries. This study also provides an important benchmark for further simulations of nanofluid dynamic transport phenomena of relevance to materials processing, with alternative computational algorithms (e.g. finite element methods). Originality/value – This paper is relatively original and illustrates the influence of variable surface temperature on transient natural convection flow of a viscous incompressible nanofluid and heat transfer from an impulsively started semi-infinite vertical plate.


Sign in / Sign up

Export Citation Format

Share Document