local nusselt number
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 30)

H-INDEX

17
(FIVE YEARS 2)

2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Adnan ◽  
Waqas Ashraf ◽  
Abdulaziz H. Alghtani ◽  
Ilyas Khan ◽  
M. Andualem

The analysis of nanofluid dynamics in a bounded domain attained much attention of the researchers, engineers, and industrialists. These fluids became much popular in the researcher’s community due to their broad uses regarding the heat transfer in various industries and fluid flowing in engine and in aerodynamics as well. Therefore, the analysis of Cu-kerosene oil and Cu-water is organized between two Riga plates with the novel effects of thermal radiations and surface convection. The problem reduced in the form of dimensionless system and then solved by employing variational iteration and variation of parameter methods. For the sake of validity, the results checked with numerical scheme and found to be excellent. Further, it is examined that the nanofluids move slowly by strengthen Cu fraction factor. The temperature of Cu-kerosene oil and Cu-water significantly rises due to inducing thermal radiations and surface convection. The behaviour of shear stresses is in reverse proportion with the primitive parameters, and local Nusselt number increases due to varying thermal radiations, Biot number, and fraction factor, respectively.


2021 ◽  
Vol 63 (1) ◽  
Author(s):  
Thomas Schaub ◽  
Frederik Arbeiter ◽  
Wolfgang Hering ◽  
Robert Stieglitz

Abstract In this paper, we present experimental results for a non-isothermal vertical confined backward facing step conducted with a low-Prandtl number fluid. The eutectic alloy gallium–indium–tin is used as the working fluid. We conducted experiments for different Reynolds and Richardson numbers covering both forced and mixed convection regimes. Time-averaged velocity profiles were measured at six streamwise positions along the test section center-plane with so-called permanent magnet probes. The local Nusselt number was measured in streamwise and spanwise directions along the heating plate mounted right after the step. We further ran RANS simulations of the experiment to study the qualitative influence of assuming a constant specific heat flux thermal boundary condition for the experiment heating plate. The measured velocity profiles show the expected behavior for both studied convection regimes, while the measured streamwise local Nusselt number profiles do not. This is explained by how the heating plate thermal boundary condition is defined. We performed an order of magnitude estimate to estimate the forced- to mixed convection transition onset. The estimate shows good agreement with the experimental data, although further measurements are needed to further validate the estimated transition threshold. The measurement of fluctuating quantities remains an open task to be addressed in future experiments, since the permanent magnet probe measurement equation needs further adjustments. Graphical Abstract


2021 ◽  
Vol 2116 (1) ◽  
pp. 012029
Author(s):  
A Briclot ◽  
J F Henry ◽  
D Caron ◽  
C Popa ◽  
S Fohanno

Abstract In this study, we conducted an experimental investigation of the thermal development of two nanofluids (γ-Al2O3 and TiO2 in deionized water) in a laminar pipe flow. To do so, the local Nusselt number is determined for Reynolds numbers from 650 to 1800. Experiments were carried out with water and two concentrations of water-based nanofluids with aluminum oxide and titanium oxide nanoparticles. The results show that the local Nusselt number remains unchanged with increasing mass concentration and that the process of thermal development is similar to that of water. Similarly, the friction factor is not affected by the addition of the nanoparticles, suggesting that these nanofluids behave like a homogeneous mixtures.


2021 ◽  
Vol 4 (8(112)) ◽  
pp. 16-22
Author(s):  
Mahmoud A. Mashkour

The heat convection phenomenon has been investigated numerically (mathematically) for a channel located horizontally and partially heated at a uniform heat flux with forced and free heat convection. The investigated horizontal channel with a fluid inlet and the enclosure was exposed to the heat source from the bottom while the channel upper side was kept with a constant temperature equal to fluid outlet temperature. Transient, laminar, incompressible and mixed convective flow is assumed within the channel. Therefore, the flow field is estimated using Navier Stokes equations, which involves the Boussinesq approximation. While the temperature field is calculated using the standard energy model, where, Re, Pr, Ri are Reynolds number, Prandtl number, and Richardson number, respectively. Reynolds number (Re) was changed during the test from 1 to 50 (1, 10, 25, and 50) for each case study, Richardson (Ri) number was changed during the test from 1 to 25 (1, 5, 10, 15, 20, and, 25). The average Nusselt number (Nuav) increases exponentially with the Reynold number for each Richardson number and the local Nusselt number (NuI) rises in the heating point. Then gradually stabilized until reaching the endpoint of the channel while the local Nusselt number increases with a decrease in the Reynolds number over there. In addition, the streamlines and isotherms patterns in case of the very low value of the Reynolds number indicate very low convective heat transfer with all values of Richardson number. Furthermore, near the heat source, the fluid flow rate rise increases the convection heat transfer that clarified the Nusselt number behavior with Reynolds number indicating that maximum Nu No. are 6, 12, 27 and 31 for Re No. 1, 10, 25 and 50, respectively


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1012
Author(s):  
Dezhi Yang ◽  
Muhammad Israr Ur Rehman ◽  
Aamir Hamid ◽  
Saif Ullah

The aim of the present study was to explore the effect of a non-uniform heat source/sink on the unsteady stagnation point flow of Carreau fluid past a permeable stretching/shrinking sheet. The novelty of the flow model was enhanced with additional effects of magnetohydrodynamics, joule heating, and viscous dissipation. The nonlinear partial differential equations were converted into ordinary differential equations with the assistance of appropriate similarity relations and were then tackled by employing the Runge-Kutta-Fehlberg technique with the shooting method. The impacts of pertinent parameters on the dimensionless velocity and temperature profiles along with the friction factor and local Nusselt number were extensively discussed by means of graphical depictions and tables. The current results were compared to the previous findings under certain conditions to determine the precision and validity of the present study. The fluid flow velocity of Carreau fluid increased with the value of the magnetic parameter in the case of the first solution, and the opposite behavior was noticed for the second solution. It was seen that temperature of the Carreau fluid expanded with the higher values of unsteadiness and magnetic parameters. It was visualized from multiple branches that the local Nusselt number declined with the Eckert number parameter for both the upper and lower branch.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
S. Eswaramoorthi ◽  
Nazek Alessa ◽  
M. Sangeethavaanee ◽  
Ngawang Namgyel

The Darcy-Forchheimer flow of a Williamson fluid over a Riga plate was analyzed in this paper. Energy and mass equations are modeled with Cattaneo-Christov theory and double stratifications. The governing PDE models are altered into ODE models. These models are numerically solved by MATLAB bvp4c and analytically solved by the homotopy analysis method. The impact of governing flow parameters on fluid velocity, fluid temperature, fluid concentration, skin-friction coefficient, local Nusselt number, and local Sherwood number is scrutinized via graphs and tables. We acknowledged that the speed of the fluid becomes diminishes for more presence of porosity parameter. Also, we noted that the thermal and solutal boundary layer thicknesses are waning due to their corresponding stratification parameters. In addition, the maximum decreasing percentage of skin friction is obtained when the suction/injection parameter varies from 0.0 to 0.4 for Williamson and viscous fluids. The maximum increasing percentage of local Nusselt number occurs when the suction/injection parameter varies from 0.4 to 0.8 for Williamson and viscous fluids.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
J. Bouslimi ◽  
M. Omri ◽  
R. A. Mohamed ◽  
K. H. Mahmoud ◽  
S. M. Abo-Dahab ◽  
...  

In this article, the effect of electromagnetic force with the effect of thermal radiation on the Williamson nanofluid on a stretching surface through a porous medium was studied considering the effect of both heat generation/absorption and Joule heating. On the other hand, the effect of Brownian motion and thermophoresis coefficients was considered. The system of nonlinear partial differential equations governing the study of fluid flow has transformed into a system of ordinary differential equations using similarity transformations and nondimensional variables which were subsequently solved numerically by using the Rung-Kutta fourth-order method with shooting technique. Moreover, the effect of the resulting physical parameters on the distributions of velocity, temperature, and concentration of nanoparticles has been studied by using graphical forms with an interest in providing physical meanings to each parameter. Finally, special diagrams were made to explain the study of the effect of some physical parameters on the skin friction coefficient and the local Nusselt number; these results led to reinforcement in the values of the skin friction coefficient for the increased values of the magnetic field and the Darcy number while the effect on the local Nusselt number by thermal radiation as well as the heat generation/absorption coefficients became negative.


2021 ◽  
Vol 10 (2) ◽  
pp. 259-269
Author(s):  
M. Veera Krishna ◽  
N. Ameer Ahamad ◽  
Ali J. Chamkha

In the current investigative paper, the impact of Hall current on an unsteady magnetohydrodynamic liberated convection revolving flow of a nanofluid restricted with a uniform absorbent medium over an oscillatory moving vertical smooth plate with convective as well as diffusive frontier conditions has been reviewed. The non-dimensionalized governing differential equations by the appropriate frontier conditions are resolved by the perturbations technique. The impacts of the physical constants on the flow as well as the heat transfer features are displayed graphically and analyzed for Cu as well as Al2O3 nanoparticles. For the engineering industry, the skin friction coefficient, local Nusselt number, along with the Sherwood’s number are examined numerically in detail.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Raheela Razzaq ◽  
Umer Farooq ◽  
Jifeng Cui ◽  
Taseer Muhammad

In this study, an analysis is made by studying more reliable nonsimilar magneto-hydrodynamics (MHD) flow of Maxwell fluid with nanomaterials. Nonsimilar transport is produced by extending of sheet with arbitrary velocity. Maxwell structure is marked to indicate the non-Newtonian fluid behavior. The leading nondimensional partial differential system (PDEs) is transmuted to a set of the nonlinear ordinary differential system (ODEs) through local nonsimilarity technique. The developing system is solved numerically using an implemented package known as bvp4c in MATLAB. The analysis discovers several physical features of thermal and velocity profiles. Remark the flow accelerated for greater Deborah and Hartman parameters. The influence of thermophoresis number on the thermal figure is minimal. The conducts of velocity, concentration, and thermal distribution and local Nusselt number and skin friction are illustrated graphically by taking distinct parameters. The consequences disclose that the local Nusselt number is an increasing function of Prandtl number; however, it is a decaying function for Brownian motion. The rise in skin friction is observed for increasing Brownian motion and Lewis numbers.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
M. Irfan ◽  
M. Asif Farooq ◽  
A. Aslam ◽  
A. Mushtaq ◽  
Z. H. Shamsi

In this work, a theoretical model with a numerical solution is brought forward for a bio-nanofluid with varying fluid features over a slippery sheet. The partial differential equations (PDEs) involving temperature-dependent quantities have been translated into ordinary differential equations (ODEs) by using similarity variables. Numerical verifications have been done in three different methods: finite difference method, shooting method, and bvp4c. To figure out the influence of parameters on the flows, the graphs are plotted for the velocity, temperature, concentration, and microorganism curves. The boundary layer thickness of the microorganism profile reduces with the Schmidt number and Peclet number. In addition to adding radiative heat flux, we added heat generation, rate of chemical reaction, and first-order slip. Adding these parameters brought new aspects to the underlying profiles. Moreover, the obtained data of the skin friction coefficient, the local Nusselt number, the local Sherwood number, and the local density of motile microorganisms are tabulated against various parameters for the physical parameters. From the results, it is apparent that the local Nusselt number decreases with the Brownian and thermophoretic parameters. The data obtained for physical parameters have a close agreement with the published data. Finally, the graphs for slip conditions are significantly different when the comparison is drawn with no-slip condition.


Sign in / Sign up

Export Citation Format

Share Document