scholarly journals Saturation-based quality assessment for colorful multi-exposure image fusion

2017 ◽  
Vol 14 (2) ◽  
pp. 172988141769462 ◽  
Author(s):  
Chenwei Deng ◽  
Zhen Li ◽  
Shuigen Wang ◽  
Xun Liu ◽  
Jiahui Dai

Multi-exposure image fusion is becoming increasingly influential in enhancing the quality of experience of consumer electronics. However, until now few works have been conducted on the performance evaluation of multi-exposure image fusion, especially colorful multi-exposure image fusion. Conventional quality assessment methods for multi-exposure image fusion mainly focus on grayscale information, while ignoring the color components, which also convey vital visual information. We propose an objective method for the quality assessment of colored multi-exposure image fusion based on image saturation, together with texture and structure similarities, which are able to measure the perceived color, texture, and structure information of fused images. The final image quality is predicted using an extreme learning machine with texture, structure, and saturation similarities as image features. Experimental results for a public multi-exposure image fusion database show that the proposed model can accurately predict colored multi-exposure image fusion image quality and correlates well with human perception. Compared with state-of-the-art image quality assessment models for image fusion, the proposed metric has better evaluation performance.

Entropy ◽  
2018 ◽  
Vol 20 (12) ◽  
pp. 947 ◽  
Author(s):  
Tao Lu ◽  
Jiaming Wang ◽  
Huabing Zhou ◽  
Junjun Jiang ◽  
Jiayi Ma ◽  
...  

Image quality assessment (IQA) is a fundamental problem in image processing that aims to measure the objective quality of a distorted image. Traditional full-reference (FR) IQA methods use fixed-size sliding windows to obtain structure information but ignore the variable spatial configuration information. In order to better measure the multi-scale objects, we propose a novel IQA method, named RSEI, based on the perspective of the variable receptive field and information entropy. First, we find that consistence relationship exists between the information fidelity and human visual of individuals. Thus, we reproduce the human visual system (HVS) to semantically divide the image into multiple patches via rectangular-normalized superpixel segmentation. Then the weights of each image patches are adaptively calculated via their information volume. We verify the effectiveness of RSEI by applying it to data from the TID2008 database and denoise algorithms. Experiments show that RSEI outperforms some state-of-the-art IQA algorithms, including visual information fidelity (VIF) and weighted average deep image quality measure (WaDIQaM).


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Li Mao ◽  
Lidong Zhang ◽  
Xingyang Liu ◽  
Chaofeng Li ◽  
Hong Yang

Extreme learning machine (ELM) is a new class of single-hidden layer feedforward neural network (SLFN), which is simple in theory and fast in implementation. Zong et al. propose a weighted extreme learning machine for learning data with imbalanced class distribution, which maintains the advantages from original ELM. However, the current reported ELM and its improved version are only based on the empirical risk minimization principle, which may suffer from overfitting. To solve the overfitting troubles, in this paper, we incorporate the structural risk minimization principle into the (weighted) ELM, and propose a modified (weighted) extreme learning machine (M-ELM and M-WELM). Experimental results show that our proposed M-WELM outperforms the current reported extreme learning machine algorithm in image quality assessment.


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 252 ◽  
Author(s):  
Xiaodi Guan ◽  
Fan Li ◽  
Lijun He

In this paper, we propose a no-reference image quality assessment (NR-IQA) approach towards authentically distorted images, based on expanding proxy labels. In order to distinguish from the human labels, we define the quality score, which is generated by using a traditional NR-IQA algorithm, as “proxy labels”. “Proxy” means that the objective results are obtained by computer after the extraction and assessment of the image features, instead of human judging. To solve the problem of limited image quality assessment (IQA) dataset size, we adopt a cascading transfer-learning method. First, we obtain large numbers of proxy labels which denote the quality score of authentically distorted images by using a traditional no-reference IQA method. Then the deep network is trained by the proxy labels, in order to learn IQA-related knowledge from the amounts of images with their scores. Ultimately, we use fine-tuning to inherit knowledge represented in the trained network. During the procedure, the mapping relationship fits in with human visual perception closer. The experimental results demonstrate that the proposed algorithm shows an outstanding performance as compared with the existing algorithms. On the LIVE In the Wild Image Quality Challenge database and KonIQ-10k database (two standard databases for authentically distorted image quality assessment), the algorithm realized good consistency between human visual perception and the predicted quality score of authentically distorted images.


Sign in / Sign up

Export Citation Format

Share Document