scholarly journals Optimal adaptive higher order controllers subject to sliding modes for a carrier system

2018 ◽  
Vol 15 (3) ◽  
pp. 172988141878209 ◽  
Author(s):  
Hadi Jahanshahi ◽  
Naeimeh Najafizadeh Sari ◽  
Viet-Thanh Pham ◽  
Fawaz E Alsaadi ◽  
Tasawar Hayat

Due to costly space projects, affordable flight models and test prototypes are of incomparable importance in academic and research applications, for example, data acquisition and subsystems testing. In this regard, CanSat could be used as a low-cost, high-tech, and lightweight model. CanSat carrier launch system is a simple second-order aerospace system. Aerospace systems require the highest level of effective controller performance. Adding second-order integral and second-order derivative terms to proportional–integral–derivative controller leads to the elimination of steady-state errors and yields to a faster systems convergence. Moreover, sliding mode control is considered as a robust controller that has appropriate features to track. Thus, this article tends to present an adaptive hybrid of higher order proportional–integral–derivative and sliding mode control optimized by multi-objective genetic algorithm to control a CanSat carrier launch system.

Author(s):  
Cheng Cheng ◽  
Songyong Liu ◽  
Hongzhuang Wu

This paper proposes an observer-based sliding mode control method for electro-hydraulic servo systems with uncertain nonlinearities, external disturbances, and immeasurable states. The mathematical model is built based on the principle of electro-hydraulic servo systems. Owing to its highly robustness and finite time properties, the sliding mode observer is chosen and designed to estimate the velocity and the equivalent pressure online only using the position feedback. Then, in order to tackle the chattering problem of conventional sliding mode control and increase the control accuracy, a novel second-order sliding mode control scheme is proposed based on the fractional-order proportional–integral–derivative sliding surface and the state observer. The stability of the overall system is proved by Lyapunov theory. Finally, the detailed simulations are conducted, which include the comparative analysis of control performance with other methods and the study of observation performance.


Author(s):  
Moussa Labbadi ◽  
Mohamed Djemai ◽  
Sahbi Boubaker

In this article, a new dynamic non-singular terminal sliding mode control technique for a quadrotor system subjected to external disturbances is evaluated. The offered control approach is based on non-singular terminal sliding mode controller combined with proportional–integral–derivative sliding surface to improve the performance. The proposed controller is formulated using the Lyapunov theory which ensured the existence of the sliding mode surfaces in finite time. Furthermore, the chattering problem, caused by the switching position and attitude laws, has been reduced using the proposed controller. Moreover, a high-precision performance trajectory tracking can be obtained. The problem of the disturbances is addressed using the suggested controller. Simulation results show the feasibility and efficiency of the non-singular terminal sliding mode control-proportional–integral–derivative proposed approach.


Author(s):  
Qingcong Wu ◽  
Xingsong Wang ◽  
Fengpo Du ◽  
Ruru Xi

The applications of robotics and automation technology to the therapies of neuromuscular and orthopedic impairments have received increasing attention due to their promising prospects. In this paper, we present an actuated upper extremity exoskeleton aimed to facilitate the rehabilitation training of the disable patients. A modified sliding mode control strategy incorporating a proportional-integral-derivative sliding surface and a fuzzy hitting control law is developed to ensure robust and optimal position control performance. Dynamic modeling of the exoskeleton as well as the human arm is presented and then applied to the development of the fuzzy sliding mode control algorithm. A theoretical proof of the stability and convergence of the closed-loop system is presented using the Lyapunov theorem. Three typical real-time position control experiments are conducted with the aim of evaluating the effectiveness of the proposed control scheme. The performances of the fuzzy sliding mode control algorithm are compared to those of conventional proportional-integral-derivative controller and conventional sliding mode control algorithm. The experimental results indicate that the position control with fuzzy sliding mode control algorithm has a bandwidth about 4 Hz during operation. Furthermore, this control approach can guarantee the best control performances in term of tracking accuracy, response speed, and robustness against external disturbances.


Author(s):  
Zeeshan Anjum ◽  
Hui Zhou ◽  
Yu Guo

The external disturbances and backlash hysteresis kind of nonlinearity present in the manipulator system can greatly affect the tracking performance of the system. In order to undo the effects of these external disturbances and backlash hysteresis, a robust controller is established based on the integration of self-tuning fuzzy nonsingular proportional-integral-derivative (PID) type fast terminal sliding mode control and time delay estimation (TDE). In this paper, TDE plays the part of estimating the unknown dynamics of the robotic manipulator and nonsingular PID type fast terminal sliding mode control in which the gains of PID are tuned using fuzzy logic system to get multiple beneficial characteristics, such as lower steady-state error, finite-time convergence and little chattering. In addition, the derivative of unknown dynamics that is considered to be bounded is dealt by utilizing the adaptive technique. Moreover, Lyapunov theorem is used to study the overall stability of the system. Finally, a comparative study in terms of trajectory tracking has been carried out between the proposed controller and other existing advanced control approaches using PUMA560 robot in order to verify the effectiveness of the proposed controller in the presence of external disturbances and bacsklash hysteresis.


2014 ◽  
Vol 1 (1) ◽  
pp. 29-36
Author(s):  
Rudy Kurniawan

Sebelumnya telah banyak dilakukan penelitian untuk mengatasi permasalahan yang terjadi pada UAV Trirotor, salah satunya adalah permasalahan kontrol kestabilannya. Permasalahan kontrol kestabilan pada UAV Trirotor adanya momen yaw yang disebabkan oleh reaksi torsi yang tidak berpasangan serta sudut kemiringan yang tidak akurat dalam menjaga kestabilan sistem pada UAV Trirotor saat melakukan gerakan hover. Makalah ini menyajikan sebuah model pengendalian yang dapat menjaga kestabilan sistem serta mendapatkan sudut kemiringan yang akurat untuk mengatasi momen yaw pada UAV Trirotor saat melakukan gerakan hover (melayang). Metode pengendalian yang digunakan adalah dengan metode pengendalian Proportional Integral Derivative (PID) dan Sliding Mode Control (SMC). Hasil simulasi menunjukkan bahwa kontroler PID dapat menjaga kestabilan sudut roll, sudut pitch, sudut yaw, serta mampu menekan error yang timbul ketika terjadi ketidakpastian dalam pengukuran parameter dan respon sistem mampu mencapai referensi yang diberikan. Dari hasil pengendalian ini juga didapatkan nilai sudut kemiringan pada salah satu rotor. Kemudian, kontroler PID dan SMC juga mampu mengatasi gangguan yang diberikan dan mempertahankan posisi ketinggian serta menjaga kekokohan pada sistem.


2020 ◽  
pp. 107754632096428
Author(s):  
Ankur Goel ◽  
Saleh Mobayen

This article deals with a novel adaptive robust controller for uncertain nonlinear systems relying on a proportional–integral–derivative-type nonsingular fast terminal sliding mode control. In this nonsingular proportional–integral–derivative-type terminal sliding mode controller nonsingular fast terminal sliding mode control, the nonsingular fast terminal sliding mode control sliding surface is modified with integral to match with the proportional–integral–derivative-type structure to obtain the essential attributes, namely, quick transient response, finite-time convergence, negligible steady-state error, and chattering cancellation. Furthermore, a novel rapid reaching law is also suggested with dynamic proof for providing the robustness during transient phase. The controller stability and convergence is mathematically analyzed using the Lyapunov theory. The overall control structure is simulated on MATLAB® software and tested for trajectory tracking of a two-degree-of-freedom revolute–prismatic joint industrial robotic manipulator. The rigorous test results show the performance efficacy of the innovative controller.


Author(s):  
Youssef Krim ◽  
Dhaker Abbes ◽  
Saber Krim ◽  
Mohamed Faouzi Mimouni

The purpose of this article is to provide a high performance control of a renewable distributed generator to guarantee an electric power quality and jointly reduce the mechanical stress despite any possible uncertainties such as the random nature of wind speed, the presence of parameters uncertainties, and external perturbations acting on the system (sudden load variation). The renewable distributed generator integrating a wind generator associated with a batteries module is considered as an energy storage device and a variable load. The proposed method is designed by a power management supervisor and a sliding mode control technique. First, the power management supervisor is used to monitor the power flows transferred between the different system devices depending on the load variation and on the intermittency of wind production. In fact, it enables to ensure the balance at the continuous, Direct Current (DC) bus between the powers supplied by the renewable distributed generator and those demanded by the load. In addition, it prevents batteries from exceeding its maximum or minimum state of charge ( SOCbat) by keeping it at an acceptable level [30%, 90%]. Second, a second-order sliding mode control based on the super-twisting algorithm is suggested to control the two subsystems (generator side and load side converters). The main target of the first one is to extract the maximum wind power taking into account the parameter variations and the fluctuating nature of wind. The second one is to investigate a second-order sliding mode control of active and reactive load power quantities, which provides better results in terms of attenuation of the harmonics present in the load voltage and current while considering the sudden load variations. In addition, a proportional–integral controller is also designed and simulated to establish a comparison framework. According to the simulation results, the second-order sliding mode control successfully deals with the nonlinearity of the renewable distributed generator compared with the proportional–integral performance.


Sign in / Sign up

Export Citation Format

Share Document